
SIAMR.EvlEw
Vol. 21, No. I, Marcb 1986

c 1986 5ociecy ror Industrial and Applied Matbematic:5
001

THE ARITHME11C OF THE DIGITAL COMPUTER:
A NEW APPROACH•

U. W. KULISCW AND W. L MIRANK.ERt

Dedicated to 1M Mau,ry of Pl,yllis Mirankn

Allmad. A new approach to the arithmetic of the digital computer is surveyed. 1be methodology for
defining and implementing Boating-point arithmetic is descn"bed. Shoncomings of elementary floating-point
arithmetic are revealed through sample problems. Tbc development of automatic computation with emphasis
on the user control of errors is miiewed. The limitations of coziventional rule-of-thumb procedures for error
control in scientific computation are demonstrated by means of examples. Computer arithmetic is extended
so that the arithmetic operations in the linear spaces and their interval correspondents which are most
commonly used in computation can be perfonned with maximum acc:uracy on digital computers. A nev.
fundamental computer operation, the scalar product. is introduced to develop this advanced computer
arithmetic.

A process of automatic error control called validation which delivers high accuracy with guarantees for
scientific computations is described. Validation of computations for a large class of numerical problems is
made poss1ble by advanced computer arithmetic. High accuracy is furnished by coupling the scalar product
with the process of-defect comction. Guarantees and error bounds are obtained by interval techniques. This
whole process establishes cenam numerical algorithms such as the evaluation of rational expressions as
additional higher order arithmetic operations. The development of some programming languages in the
context of computer arithmetic is reviewed. A collection of constructs in terms of which a source language
may accommodate the methodology of computer arithmetic in a user-friendly mode is described. Finally the
current state of implementation of the ideas discussed here is reviewed.

Key words. floating-point, fully accurate inner product, semimorpbism. computation with guarantees

AMS(MOS) subject classifications. 65005, 6SG10, 6SG99

CONTENTS
1. Introduction .. 1
2. Floating-point numbers and elementary floating-point arithmetic 3
3. Hisloric l'CIDIJ'b and IDOcivalion ... 14
4. Advanced computer arithmetic .. 19

4.1. Comments on the derivation of semimorpbisms 22
4.2. Implementation of advanced arithmetic on computers 24
4.3. lmpJemention of scalar products .. 25

S. Extension to self-validating methods .. 27
S.1. Imprecise data ... 30
S.2. Continuous mappings . 30
S.3. Expression evaluation .. 32

6. Connection with programming languages . 33
6.1. Basic computer arithmetic 34
6.2. Advanced computer arithmetic .. 36
6.3. Higher computer arithmetic . 36

7. Final remarks .. 38
lleferenccs ... 39

1. Introduction. Historically, computers were developed for scientific computa
tion. Today, the digital computer is a general purpose machine. It is used in such
diverse areas as game playing, banking, reservation systems, traffic control, language

•Received by the editors July 30, 1984, and in revised form July 1, 1985.
tumversity of Karlsruhe, Karlsruhe, West Germany and IBM T. J. Watson Research Center. Yorktown

Heights, New York 10598. This article was panially prepared during a stay of the authors at the Computer
Science Department of the University of California at Santa Barbara, in February-March, 1984.

1

2 U. W. KULISCH AND W. L. MlllANICEll

translation and inventory control. Because of this proliferation of computer usage, it is
easy to overlook the central relationship between the computer and scientific computa
tion.

There are two principal number systems used in a modern digital computer. These
are integer systems (fixed-point systems) and floating-point systems. These number
systems require different concepts of computer arithmetic. The integer system is to a
large extent the system used in the area of nonscientific computation of the types
enumerated above. As long as the values of computed results do not exceed the range
of representable integers (i.e., as long as no overfiow and no noninteger result occurs),
these computations are error-free. For this reason, the public image of the computer is
one of a perfect compu~tjonal tool.

Problems of scientific computation occur everywhere in the natural sciences and in
technology. Examples of such problems are solving a differential equation or a system
of algebraic equations. The floating-point system along with the operations of floating
point arithmetic are used as an approximate means for calculating solutions of such
problems. Floating-point arithmetic confronts us with a seemingly paradoxical situa
tion. On one hand, many modern computers perform the basic floating-point opera
tions with high, even maximum accuracy. Nevertheless, the results of a scientific
computation composed of several of these operations may be grossly incorrect. As an
example of this consider the determination of the following sum.

1050 + 812- 1050 + 1035 + 511 -1035 = 1323.

By summing these numbers from left to right, most digital computers will return 0
(zero) as the answer. This error comes about because the floating-point formats in these
computers are unable to cope with the large digit range required for this calculation.
The obvious solution for this particular example is to exchange the operands in an
appropriate way. Such problem fixes are not always known. Even when they are
known, they cannot always be applied for practical reasons. We shall give several
additional examples of the failure of computers to deliver correct results later on.

This article deals with floating-point arithmetic from a contemporary point of
view. We shall show that recently developed concepts and methods of floating-point
arithmetic provide a superior capability for modern digital computers with far-reaching
consequences for scientific computation. For example, they go a long way toward
eliminating errors of the type just described. There are other nonfloating-point arith
metic implementations for eliminating error in scientific computation. Examples of
these are rational arithmetic, the use of multiple precisions and the full precision
arithmetic found in such systems as SCRA TCHPAD and MACSYMA. We stress that
our methodology is to enhance the practical high performance quality of floating-point
with the safety which is provided with these other methods.

We begin this development in §2 with a description of floating-point numbers and
elementary floating-point arithmetic. The methodology for defining and implementing
floating-point arithmetic is informally described. Shortcomings of elementary floating-
point arithmetic are revealed through sample problems. .

In §3 we give a brief review of the development of automatic computation with
emphasis on the user control of errors. R.ule-of-thumb procedures for error control
employed in scientific computation are discussed~ Limitations of these procedures are
demonstrated by means of examples. This motivates the necessity for the further
development of computer arithmetic which follows.

In §4 we extend computer arithmetic so that the arithmetic operations in the linear

spaces and tht
tion can be pe
tal computer
computer aritr

In §5 a pr
delivers high a
putations for
computer aritt
special numeri
obtained by in
rithms such as
metic operatioi

In §6 we r
computer arith
language (suet
computer arith
into three leve
elementary cor
co~cemed with
tation. The thiJ
language to co
tions with max.

In §7 the c
Many oft

well-known col
arithmetic. Ith
by ourselves ai

body of work v
uted to this ne·
reader we do i
arithmetic outs:

We view a
the subject m~
arithmetic is gi·
these ideas is i
described. We t

2. Floatini
hers can be def
Independently
expansions in t
employ a base l
form:

(1)

where• e{+,
integers betweei

(2)

,uter usage, it is
mtific computa-

:omputer. These
These number

r system is to a
:,n of the types
·xceed the range
:r result occurs),
the computer is

I sciences and in
lion or a system
ions of fioating
olutions of such
U'adoxical situa
ing-point opera
; of a scientific
incorrect As an

ers will return 0
. formats in these
this calculation.

: operands in an
1 when they are
.ball give several
ts later on.
oporary point of
of floating-point
with far-reaching
.ong way toward
ating-point arith
ion. Examples of
:he full precision
A. We stress that
' of Boating-point

oint numbers and
md implementing
211entary fioating-

computation with
for error control

:se procedures are
y for the further

ltions in the linear

AIUTIIMETIC OF 111E DIGITAL COMPUTER 3

spaces and their interval correspondents which are most commonly used in computa
tion can be performed with maximal accuracy on digitial computers. A new fundamen
tal computer operation, the scalar product, is introduced to develop this advanced
computer arithmetic.

In §S a process of automatic error control called validation is described. Validation
delivers high accuracy with guarantees for scientific computations. Validation of com
putations for a large class of numerical problems is made possible by advanced
computer arithmetic. High accuracy is furnished by coupling the scalar product with a
special numerical process called defect correction. Guarantees and error bounds are
obtained by interval techniques. This whole process establishes certain numerical algo
rithms such as the evaluation of rational expressions as additional higher order arith
metic operations.

In §6 we review the development of some programming languages in the context of
computer arithmetic. We describe a collection of constructs in terms of which a source
language (such as FORTRAN or PASCAL) may accommodate the methodology of
computer arithmetic in a user-friendly mode. For this, we organize computer arithmetic
into three levels of implementation. The fll'St level, called basic arithmetic, deals with
elementary computer arithmetic augmented by the scalar product. The second level is
concerned with advanced computer arithmetic and its setting in linear spaces of compu
tation. The third level treats the validation process, including the capability of a source
language to conveniently express the evaluation of expressions such as rational func
tions with maximum accuracy.

In §7 the current state of implementation is reviewed.
Many of the computational examples used in this article, have been taken from

well-known collections [12), (25). We stress that this is not a review paper on computer
arithmetic. It is a survey of the new approach to this subject which has been developed
by ourselves and a number of collaborators in recent years. For this reason the large
body of work which deals with computer arithmetic but which has not directly contrib
uted to this new approach is neither surveyed nor ref erred to. For convenience to the
reader we do include a supplementary bibliography of important work in computer
arithmetic outside of the new approach.

We view as a high point of the new approach a coherency with which it addresses
the subject matter. A simple but rigorous mathematical foundation for computer
arithmetic is given. Applications and reduction to practice in scientific computation of
these ideas is included. Finally, implementations in hardware and software are also
described. We believe that new prospects for computation are likely as a result (16).

2. Floating-point numbers and elementary ftoating-point arithmetic. The real num
bers can be defmed axiomatically as a conditionally complete linearly ordered field R.
Independently of what this this abstract idea means, we are familiar with decimal
expansions in terms of which real numbers may be represented. Decimal expansions
employ a base b-= 10. In the case of a general base, such an expansion has the following
form:

-00

(1) x- • d,,d,._
1

• • • d
1

d
0

.d_
1

d_
2

d_
3

• • • -= • E d;b;,
i•n

where• e { +,-}and bis an integer greater than unity. The d;, is:::n(-1)-oo, are
integers between zero and b-1. That is,

(2) 0~d,~b-1 for all i=n(-l)-00.

4 U. W. KULISCH AND W. L. MlllANKEll

For technical reasons stemming from the requirements of the uniqueness of representa
tions of the form (1), we also require that

(3) d1 ~ b-2 for infinitely many i.

In (1) bis called the base or the radix of the number system. The point between d0 and
d_ 1 is called the radix point, i.e., the decimal point whenba:10. The d,, ;-n(-1)-oo,
are called the digits (of base b). (When b • 2 the digits are called bits.)

Arithmetic operations for these infinite b-expansions are defined by means of
successive approximations. Let x and y be two real numbers. Truncation of the
b-expansion of x and y · after the rth digit after the radix point gives the truncated
expansions x, and y,, • respectively. For any of the arithmetic operations • E

{ +, - , X, /}, the result· x, • y, can be calculated following well-known rules. The
operation x • y for • E { +, - , x, /} for the full b-expansions is then defined as the
limit of the sequence x, • y,, obtained by letting r go to infmity. Such a limiting
process cannot be executed in a finite time. Thus for an approximation of the real
numbers and operations, fioating-point numbers and floating-point operations are
used. Such numbers are representable and such operations are implementable on a
computer.

A normalized floating-point number x (in sign-magnitude representation) is a real
number x in the form

:x= • mbe.

Here • e { +, - } is the sign of the number (sign(x)), mis the mantissa (mant(x)), bis
the base of the number system in use and e is the exponent (exp(x)); b is an integer
greater than unity. The exponent is an integer between two fvted integer bounds el, e2,
and in gener~ el~ 0 ~ el. The mantissa m is of the form

I

m= L d(i]b- 1
•

i•l

The d(i) are the digits of the mantissa. They have the properties d[i)E {O, l,· • •, b-1}
for all i= 1(1)/ and d[l]¢0. Without the condition, d[l):¢0, fioating-point numbers
are said to be not nonnaJizect The set of norma]ittd floating-point numbers does not
contain zero. For a unique representation of zero we assume that sign(O)= +, mant(O)
-0.00 • • • 0 (/ zeros after the radix point) and exp(O)=el. A floating-point system
depends on the constants b,I, el, and e2. We denote it by R=R(b,l,e1,e2).

A fioating-point system R consists of a finite number of elements. They are
equally spaced between successive powers of b and their negatives. This spacing
changes at every power of b. Figure 1 shows a simple floating-point system R -
R(l, 3, -1, 2) consisting of 33 elements [12]. The successive powers of 2 are ± ¼, ± ½,
± 1, ± 2. The ·noating-point system R has a greatest and a least element. Each number
in R has to represent an entire interval of real numbers. For instance, in Fig. 1 the
fioating-point number 3 might represent the indicated shaded interval. A floating-point
system has the appearance of a screen placed over the real numbers. Indeed, the
expression fioating-point screen is often used.

Next we tum to the arithmetic operations +, -, x,/. These operations for real
numbers are approximated by floating-point operations. U x and y are floating-point
numbers, the exact point xx y itself is not usually a floating-point number of
R(b,l,e1,e2) since the mantissa of xxy has 2/ digits. For related reasons, the exact
sum x + y is also not usually a floating-point number. Since a computer must be able to

LEAST ELEMI

represent the rt
be a fioating-p
floating-point s
operation.

If • is OD(

floating-point c
the following m

(RG) x m

In (RG), □ is
properties (RI)
(RI)

that is, the scree

(R2)

that is, □ is mon
The three f;

away from zero

(R4)

We impose this 1

Later on we
ing-point compu
monotone down
acterized by (Rl

(RJ)

Thus, V rounds
~ do not have ti

All operati<
produce results c

ss of representa•

between d0 and
, im:n(-1)- 00,

,cl by means of
uncation of the
s the truncated
operations • e
1own rules. The
n defmed as the
Such a limiting
1tion of the real
t operations are
lementable on a

mtation) is a real

.a (mant(x)), b is
); b is an integer
er bounds el, e2,

={0,1,· ··,b-1}
1g-point numbers
1umbers does not
1(0)= +, mant(O)
ting-point system
?1,e2).
Dents. They are
ies. This spacing
,oint system R ;c

>f 2 are ± ¼, ± ½,
ent. Each number
nee, in Fig. 1 the
LA floating-point
1bers. Indeed, the

,perations for real
are floating-point

-point number of
reasons, the exact
ter must be able to

AlUTHMETIC OF THE DIGITAL COMPUTER 5

~
2,.

"'• "'2 "':1 ffl4

-1 1/2 0.100 0.101 0.110 0.111

0 1 0.100 0.101 0.110 0.111

I 2 0.100 0.101 0.110 0.11 I

2 ' 0.100 0.101 0.110 0.111

NONZERO ELEMENTS Of LEAST

LEAST ELEMENT ---, IT ABSOLUTE r GREATEST ELEMENT

I I I I 1 11 Im■ I ■ml 1 1 1 I 1 + 1 I • R
-4 ·3 .Z -t-WO 1121 2 3 4
t f f ft ft f f f POWERS OF 2

FIG. 1. A 1impk floating•point system.

represent the results of its own operations, the result of a floating-point operation must
be a floating-point number. The best we can do is to round the exact result into the
floating-point screen and take the rounded version as the definition of the floating-point
operation.

If • is one of the exact operations, +, - , x, /, let Iii denote the corresponding
floating-point operation. Then our choice of floating-point operations is expressed by
the following mathematical formula.

(RG) x Iii y:== □(x•y) forallx,yeR andall •e{+,-,x,/}.

In (RG), □ is a mapping □: R-. R. □ is called a rounding if it has the following
properties (Rl) and (R2).

(RI) □x=x for all xeR,

that is, the screen R is invariant under the mapping □.

(R2) x~y~□x~□y for all x, yeR,

that is, □ is monotonic on the real numbers.
The three familiar roundings: to the nearest floating-point number, toward zero or

away from zero have properties (RI) and (R2) and the following additional property.

(R4) a(-.x)= -□x for all xeR.

We impose this requirement of antisymmetry on many roundings.
Later on we shall develop arithmetic techniques for supplying guarantees in float

ing-point computation. For these techniques, we need the monotone upwardly and the
monotone downwardly directed roundings ~ and V. These two roundings are char
acterized by {Rl), (R2) and the additional property

(R3) Vx~x and X'a1~X for all xeR.

Thus, V rounds to the left and ~ rounds to the right. However, the roundings V and
~ do not have the antisymmetry property {R4).

All operations defmed by (RG) and a rounding with the properties (Rl)-(R3)
produce results of maximum accuracy in a certain sense which is rounding dependent.

6 U. W. KULISCR AND W. L. MillANICER

In particular, between the correct result (in the sense of real numbers) and the ap
proximate result x lil y (in the sense of the screen of floating-point numbers) no other
floating-point number in the screen can be found.1

The proof of this property follows easily from (RO), (Rl) and (Rl).
Proof. Assume that u, v e R are two adjacent floating-point numbers with the

property u:iax • y~v. Then from (Rl) we obtain au~C(x • y)~□v. Then (Rl) and
(RO) deliver the desired result u ~ x lil y ~ v. a

For convenience, we shall refer to the class of roundings which satisfy (Rl), (Rl),
and (R4) along with the special roundings ~ and Vas admisst"ble roundings. We may
summarize this discussion· by saying that admissible roundings generate muimally
accurate floating-point arithmetic through use of (RO).

Algorithms for implementation of the operations defined by (RO) and admissible
roundings which are used on many computers can be found in the literature (15], (18],
(19), (21). Here we review the main features of implementation.

At first sight it seems to be doubtful that formula (RG) can be implemented on
computers at all. In order to determine the approximation x l!l y, the exact but
unknown result x • y which is in general neither computer specifiable nor computer
representable seems to be required in (RG). It can be shown, however, that whenever
x • y is not representable on the computer, it is sufficientto replace it by an appropriate
and representable value x • y. The latter has the property D(x • y) = D(x • y) for all
roundings in question. Then x • y can be used to defme x l!l y by means of the
relations

X I!] y = □(X • y) = □(X • y) for all X' y ER.

There are fast algorithms for an implementation of (RG) on computers. These algo
rithms consist of the following ftve steps:

1. Decomposition of x and y, i.e., separation of x and y into mantissa and
exponent. If a floating-point number is not stored in a single word, this step is
vacuous.

2. Determination of x • y. It may be that .x • y:.:x • y.
3. Normalization of x ~ y. x • y requires normalization if its mantissa has one or

more zero digits following the radix point. Normalization consists of repeatedly
shifting the mantissa left by one digit and decreasing the exponent by unity
until all such zeros are eliminated. A single shift right may also be necessary in
the case of addition. If the result of 2 is already nonnalizM. this step can be
skipped.

4. Rounding of x • y determines x liJ y == C'(x a y) = C'(x • y).
5. Composition, i.e., assembling of the mantissa and exponent of the result into a

floating-point number. If floating-point numbers are not stored in single words,
this step is vacuous.

Figure 2 shows a graphical representation of these five steps in the form of a flow
diagram. Since we deal with monotone roundings only, the normalization has to be
performed before the rounding, since otherwise the monotonicity of the rounding is
lost. Division can be executed in a manner that eliminates the need for normalization.

1 We shall introduce the term maximal.CJ accuracy later to describe this concept of accuracy for a class of
computer operations. since the accuracy depends on the rounding a. For convenience we drop the suffix
(-C). since confusion will not occur.

FIG. 2. Flow di
multiplication; D V:

In the impleme1
all x,yeR. Thi
is long enough.
execution of the
the floating-poir
cannot be strictl
to implement fie
this implementa
accumulator and
ate all admissibl
with one digit,\\
of base b after
register with one
digits of base b r:

An accumuli
and optimal rest
operations. The b
which may occur
the mantissa of t

following illustrati,
cases of the round

-s) and the ap-.
nbers) no other

mbers with the
Then (Rl) and

isfy (Rl), (Rl),
1dings. We may
rate maxirnaJ1y

and admissible
:-ature (15), [18),

mplemented on
. the exact but
e nor computer
·, that whenever
, an appropriate
CJ(x i y) for all
y means of the

ers. These algo-

o mantissa and
·ord, this step is

tissa has one or
m of repeatedly
,onent by unity
be necessary in

this step can be

the result into a
in single words,

form of a flow
?ation has to be
the rounding is

,r normalization.

.ccmacy for a class or
e we drop the suffix

AIUTHMETIC. OF 11fE DIGITAL COMPUTER 7

z

FIG. 2. Rowdiag,amfortJ,,aritluMticopmllions DC: tl«omposition; A,S: addition and subtraction; M:
multiplication; DV: division; N: nonnalization; R: roaouling; C: compo1ition.

In the implementation of (RG) it is essential that x l!I y is produced by CJ(x • y) for
all x,yeR. This can only be achieved if the accumulator that performs the operations
is long enough. There are still many cornputers in the marketplace which for the
execution of the floating-point operations use an accumulator which is only as long as
the floating-point mantissa. We shall presently use a simple example to show that (RG)
cannot be strictly realized with such an accumulator. While there are many tricky ways
to implement floating-point arithmetic, there have emerged two standard approaches to
this implementation which we shall discuss: the implementations by a so-called long
accumulator and by a so-called short ac.cumulator. These two accumulators accommod
ate all admissible roundings of interest. The long accumulator is a computer register
with one digit, which may be a binary digit,in front of the radix point and 2/+ 1 digits
or base b after the radix point. See Fig. 3a. The shon accumulator is a computer
register with one digit, which can be a binary digit, in front of the radix point and / + 2
digits of base b plus one binary digit after the radix point. See Fig. 3b.

(a) t""lt.====='======C::::===='====::.::!J
I bit 2/ + I digits of base b

(h) I I , I
t , + 2 diJil• of ba,e h

I bit

11

1
I hit

FIG. 3. (a) L«,g a«lllfflUlltor, (b) Mort a«llffllllator.

An accumulator shoner than the short accumulator cannot always deliver correct
and optimal results (in the sense which we have specified) for the floating-point
operations. The bit on the left end of both accumulators is used for a possible overflow
which may occur in case of addition. U the short accumulator is used for multiplication,
the mantissa of the product bas to be built up from the right as illustrated by the
following illustration. The bit on the right end of the shon accumulator is needed in the
cases of the roundings I::,. and V.

8 U. W. KUUSCH AND W. L. MlRANKEll

,

342 9

04403

0.0783.29

,

0. 4 403il0.1779•0.7K33x 10- 1

panial product or length I + I

and

panial summands or length / + 2

We now give a simple example which shows that any reduction of the length of the
accumulator causes a failure to deliver the optimal results we have specified. Take /=4
and the decimal system b= 10. We show that an accumulator of /+ 1 = 5 digits fol
lowed by an additional binary digit d after the point is not capable of delivering correct
results as defmed by (RG) in all cases. Let .x=0.1000X106, y= -0.5001 x101, so that
.x + y = 0.099994999 x 106

• If we now apply the rounding to the nearest floating-point
number (to four decimal digits), we obtain: .x Bl y== 0.9999 x 105• However execution
in an accumulator of S decimal digits leads to a different result, namely 0.1000 x 106•

In practice, the choice between the short and long accumulators depends on side
considerations such as the technology employed and fine points in the design. However,
a fundamental perception of numerical analysis is that advanced optimal methods of
computer arithmetic (which we shall develop below) require the accumulation of the
full double length product of two floating-point numbers. Such double length products
cannot be efficiently prpduced by the short accumulator.1bis consideration gives very
high priority to the choice of the long accumulator for the execution of floating-point
operations. Indeed use of the short accumulator would require a complicated simula
tion process for accommodating the double length products needed for the approach to
high accuracy computer arithmetic in product spaces which we develop below.

Although this requirement for the double length product is well known in numeri
cal computation. many processors continue to be built without this feature, some even
adhering to a currently fashionable (albeit dubious) claim of furnishing high accuracy
in computation.

Let us return to our earlier point that although floating-point operations with
maximum accuracy can be implemented and realized in computers, results of scientific
computations composed of these operations may be grossly incorrect. All mathematical
statements depend critically on the premises upon which they are builL Arithmetic
expressions or numerical algorithms are not exempted from this requiremenL If com
promises are made such as the replacement of full precision addition or the replace
ment of the full set of real numbers by a finite set of floating-point numbers, we are
obliged to accept compromises in the result of evaluating that expression or executing
that numerical algorithm. Perhaps what is surprising is that the discrepancies in the
results can be catastrophically large even though the compromises in the premises are
quite small. We illustrate this phenomenon with a few examples.

I

I. Cancell
mantissa of 5 d

Using the short

That is, .xBy=
point is called c
end of the resu
sense of an exac

Now supp,
rounded result!
y=CJ(yl Xy2). 1
are taken· to be

Rounding gives

That is, .x1 x .x2 -

Comparisoi
digits of the m,
occurs whenever
tion step is erro1
rounded.

Cancellatio1
that the result c
can be obtained
length and then :

an optimal resul
Cancellation ma:
one speaks of gl,
the occurrence of

+l

1+2

~ the length of the
~ed. Take /=4
+ 1 = 5 digits fol
delivering correct
.001 X 101, so that
"CSt floating-point
iowever execution
y 0.1000 X 106•

; depends on side
design. However,

,timal methods of
.:umulation of the
le length products
eration gives very
; of floating-point
mplicated simula
,r the approach to
pbelow.
known in numeri
eature, some even
mg high accuracy

t operations with
esults of scientific
All mathematical
built. Arithmetic

uirement. If com
>n or the replace
t numbers, we are
ssion or executing
screpancies in the
1 the premises are

AIUTHMETIC OF THE DIGITAL COMPUTEll 9

l. Cmcellation. Consider a floating-point system with the base b = 10 and a
mantissa of S digits. We compute xBy, where

x-=0.10005x105 and y= -0.99973x104 •

Using the shon accumulator, we get

0.1000S X 105 -0.99973 X 104 -= 0.1000S00 X 105

-0.0999730 X 105

0.0000770 X 105

nonnaUzed: 0.7700000 x 101

rounded: 0.77000 x 101

That is, x By-= 0. 77000 x 101. The occurrence of leading z.ero digits after the decimal
point is called cancellation. The process of normalization then fills in zeros at the right
end of the result. The rounding has no effect, i.e., the result is error free even in the
sense of an exact subtraction of real numbers.

Now suppose that each of the floating-point numbers x and y are themselves
rounded results of products of two floating-point numbers, i.e., x = CJ(x 1 xx 2) and
y=D(y1 Xy2). The products x1 Xx2 and y1 Xy2 which have mantissas of double length
are taken to be

X1 X X2 = 0.10005482410 X 105,

Y1 Xy2=0.09997342213 X 105•

Rounding gives the values of x and y used previously. Subtracting, we now get

X1 Xx2-Y1 Xy2=0.10005482410Xl0 5

-0.09997342213 X 105

0.00008140197 X 105

nonna)ized: 0.8140197 x 101

That is, X1 Xx2-Y1 Xy2-=0.8140197 X 101
.

Comparison with the result xBy=x11!Jx2By1eJy2 obtained earlier shows that no
digits of the mantissas coincide. The results agree only in magnitude. Cancellation
occurs whenever two nearly equal numbers are subtracted. Although the single subtrac
tion step is error free, cancellation is very dangerous if the data themselves are already
rounded.

Cancellation is the cause for many failures in floating-point computation. Note
that the result D(x1 Xx2-y1 Xy2) prescribed by our methods (compare (RG) above)
can be obtained if the products x1 Xx2 and y1 Xy2 are computed to their full double
length and then subtracted using the long accumulator. Indeed, in this case we get

a(xl Xx2-Y1 Xy2)-=0.81402 X 101
t

an optimal result since no floating-point number lies between it and the exact result.
Cancellation may also occur over a long chain ol additions/subtractions. In this case,
one speaks ol global or catastrophic cancellation. Long computations tend to conceal
the occurrence ol global cancellation as the following example shows.

10 U. W. KUUSCH AND W. L. MlllANKER

2. Global c:anceUadon. Using Taylor series, the following formula for the exponen
tial is derived.

CCI zV

ez= L ,.
u-o "·

1bis series is absolutely convergent for every value of z in the complex plane. For z
real and negative the terms in the series alternate in sign. In this case the magnitude of
the error committed by truncating such an alternating series is less than the magnitude
of the first term neglected. Let us use this series to calculate the value of the exponen
tial for z - - 20 and employing a floating-point system with 6 decimal digits in the
mantissa. In Fig. 4, we display a list of the terms of the series for v == 1(1)62. The

■- • •2.00000000000H•Ol

0
I
2
s
• ,
• 7
I

• 10
u
12
13

•• u,
16
17
II ..
20
21
22
2:1
H
2S
26
27
2•
H
so
31
S2
33
s• s,
36
37
SI
s•
•o
'1
•2
•s .. . ,
•• •1
H

•• 50 ,.
92
ss ,. ,, ,.
57 ,. ,.
•o
•1
•2

F10. 4. Floating-point nunmation of ,ma for upon,ntial.

"1:

..i

computed valt
this point bee.
terms. Stoppin
error property
influence the c
have drawn a
places after th(
summand to ti:

The correc
of the order IC
To see this no
value 4309960(
two places to t
sum involving
cancellation to
places except b
in the comput
incorrect. The
(taken from [is
by himself. The
answer obtaine
digit mantissa (

3. Scalar I
elements each:

for

The correct valt

The computer d

so that even the
digits.

4. Aritbmel

for

The correct ans,

for the exponen-

plex plane. For z
the magnitude of
an the magnitude
e of the exponen
.mal digits in the
r vi::1(1)62. The

.AlUTBMETIC OF THE DIGITAL COMPUl'ER 11

computed value of the sum of these terms is 181.496. The summation was stopped at
this point because the last s;nrnrnaud is less than 10-7 times the sum to the indicated
terms. Stopping at this point is conventional numerical practice, since according to the
error property of the alternating series already noted, further summing ought not to
influence the computed resulL However, the correct result is 0.00000000206115 We
have drawn a vertical line in the display of the summands between the 8th and 9th
places after the decimal poinL As we now see from the correct results, all digits of every
summand to the left of this line should cancel.

The correct answer is of the order 10-9 while the computed floating-point result is
of the order 103• More cannot be expected of a result computed with 6 decimal places.

• To see this note that the largest summand corresponds to vs::::20, and that it has the
value 43099600. This summand cannot be correct to more than 6 places. Thus, the first
two places to the left of the decimal point of this summand have no meaning, and any
sum involving them can likewise have no meaning in these two places. Then the global
cancellation to the left to the indicated vertical line can likewise not occur in these two
places except by the sheerest accident. In fact, the required cancellation does not occur
in the computation, and so, the leading digits of the computed sum indicated are
incorrect. The reader should try to compute the solution of the following examples
{taken from [25]) with his pocket calculator, personal computer or by use of a mainframe
by himself. The correct result for each of the problems is given, and in most cases, the
answer obtained by a computer using a floating-point system with a 14 hexadecimal
digit mantissa (i.e., base 16 or approximately 17 decimal digits) is also given.

3. Scalar products. Calculate the scalar product of two vectors A and B with five
elements each:

SP=Al XB1+A2XB2+A3XB3+A4XB4+ASXBS

for
Al = 2.718281828,
A2 = - 3.141592654,
...43 = 1.414213562,
A4 = 0.S772156649,
AS = 0.3010299957,

The correct value of the scalar product is

Bl = 1486.2497,
B2 = 878366.9879,
B3 = - 22.37492,
B4 = 4773714.647,
BS = 0.000185049.

- 1.006S7107 X 10-11 •

The computer delivers

+0.335 ... x10-9,

so that even the sign is incorrect. Note that no vector element has more than 10 decimal
digits.

4. Aritbmedc expressions. Evaluate the arithmetic expression

(1682XY"+ 3X3 + 29XY2 - 2X5+ 832)/107751

for

x-192119201 and Y=3S675640.

The correct answer is 1783. The computer delivers

-S.385 ... x1022 .

-

12 U. W. KULISCH AND W. L. MlllANKEJl

S. Polynomial evaluation. Evaluate the polynomial

P{X)=8118X4 -11482X3+X2 +5741X-2030
for

X=0.707107.
The correct value of the polynomial is

- l.91527325270 ... X 10-11 •

The computer delivers

!(X)== -1.9781509763S611891 X 10-11•

6. Linear ~ Solve the set of equations

64919121X-159018721Y = 1,
41869520.SX -102558961Y = 0.

Expressions to evaluate X and Y exactly are

Y= (41869520.5/64919121)/(1025S8961-41869520.5 X 159018721/6491912),

X = (102558961/41869520.S) Y.

The correct results are

X=205117922,

The computer delivers

Y = 83739041.

X=0.987372352669808606 X 10-1, Y = 0.403093099594116210 X 10- 1.

What result does your computer deliver?

7. Extrapolation. The following values are given

X 5201477 5201478 5201479
Y 99999 100000 100001.

Obviously the three values fit on a line. Therefore, a best linear approximation L(x)=
mx + b must yield L(5201480)= 100002. Formulas for the computation of m and b are

X1 x Yl+X2x Y2+X3x Y3-½(Xl+X2+X3)(Yl+ Y2+ Y3)
m 2 '

Xl+X22 +X32-t(Xl+X2+X3)

b=½(Yl+ Y2+ Y3)-; (Xl+X2+X3).

Evaluate m and b using these formulas and determine L(5201480). The correct results
are m == 1, b = - S10418 and L(5201480}-= 100002.

8. Differentiation. Consider the function

49701-4923
/(l)m: 49701 2-97991+4830.

An approximation for the value of the second derivative /"(I) of a function /(1) may
be computed from the expression

/(1-h)-2/(1)+/(1+h)
hl

I
i
t
'

I

with some sma
above expressi,

A

A

A

The exact value

A

A

A

9. Expres!

for x = 94786~7

What is the rest

10. Compl,

for

The correct valt

These examples
the four arithm
lems of the sin
results in compt
ment, weapon s~

The reader
lems did not pre
do no better. TJ
that the digital ,
computation? N
ods to detect su
require extensiv
considerable tim
is sophisticated ~
and is usually at

In the folio,
so that the digiu
in floating-point

!l/6491912),

ximation L (x) =
n of m and b are

'2+Y3)

he correct results

mction /(t) may

ARIIHMETIC Of THE DIGITAi. COMPUl'ER 13

with some small value for h. Determine an approximation of /"(1) with the help of the
above expression for h = 10-•, h-== 10-5, h = 10-8• The correct results are:

Approximation with h :c: 10-4 : 70. 78819

Approximation with h-10- 5: 93.76790

Approximation with h == 10-8: 94.00000

The exact value for the derivative is f"(l)as 94. The computer delivers:

Approximation with h-10-•: 70.7804197738837856

Approximation with h-= 10-s: 93.12785680180180116S4

Approximation with h = 10-8: 30695.44110S3317471

9. Expression evaluadon. Compute the value of the expression

83521y8 + 578x2y 4
- 2x4 + 2x6

- x 8

for x = 94786S7 and y = 2298912. The correct value is

-179689877047297 .0.

What is the result obtained on a pocket calculator? on a large computer'?

for

10. Complex division. Compute the quotient of two complex numbers

(a+ib)/(x+iy)

a= 1254027132096,
b = 886731088897,

X = 886731088897,
y = 627013S66048.

The correct value of the quotient is

1.41421. .. + i8.47861. .. X 1025 •

These examples show that computers supplied with the best possible implementation of
the four arithmetic operations +, - , x, / can deliver arbitrarily bad results in prob
lems of the simplest form. One may imagine the possible implications of incorrect
results in computation for more serious purposes such as power grids, reactor manage
ment, weapon systems, aircraft design and control, vehicle stability and so on.

The reader should not be discouraged if his or her attempts to solve these prob
lems did not produce the correct answer. Most computers in the marketplace today can
do no better. The examples make a bad case for floating-point arithmetic. How is it
that the digital computer has for many years been used very successfully in numerical
computation? Numerical analysts have developed great skills and sophisticated meth
ods to detect such errors and to maneuver around them. These specialii.ed techniques
require extensive study and much experience to be used. Moreover their use adds
considerable time and expense to the computational process. Not every computer user
is sophisticated and experienced. The inexpert user is often unable to detect such errors
and is usually at a loss of how to proceed when such errors occur.

In the following sections we show how floating-point arithmetic bas been advanced
so that the digital computer can automatically control and rectify many errors inherent
in floating-point computation. Indeed, a new capability called validation is possible in

14 U. W. KULISCH AND W. L. MlllANKEll

many cases, whereby the computer gives a result and an absolute assertion of its
accuracy. In this manner, the computer becomes a precise scientific instrument rather
than an experimental tool.

3. Historic remarks and motivation. The Roman number system is hardly one
upon which to build a computing machine. What is surprising is that this ancient
system was in widespread use in Europe up to the 15th c.entury. It was supplanted by
the Arabic number system, itseH a system dating from antiquity, in other parts of the
world. Once the Arabic number system became widely adopted in Western Europe,
mechanical calculating devices of all sorts began to appear. Better known examples of
these devices are associated with the names of Blaise Pascal and Gottfried Leibniz.
Pascal is credited with ~ving built and used an adding machine. A little later Leibniz
invented the principle of the stepping cylinder (StaffelwaJze) by means of which it was
possible to perform all four operations of arithmetic directly. This device, in one form
or another, could be found in mechanical calculators up to the present day.

The realiz.ation that the intellectual process of computation could be implemented
by mechanical devices was a major fundamental discovery. 1bis discovery created an
industry which developed further principles and concepts of mechanical computation,
as well as devices by means of which they were implemented. The descendants of these
venerable firms could be found pursuing the same enterprise well into the 20th century.
Some of them are currently in the electronic computer business.

With the invention of the logarithm by John Napier and others, the appearance of
the slide rule soon followed. 1bis was an essential step in the development of analog
computing devices. Although not as widely spread as the digital computer, analog
devices still exist today in sophisticated electronic and mechanical form.

The relatively slow speed of mechanical computing devices supported an interac
tive mode of computation whereby the user monitored the result of each operation as it
was produced. Thus, error control and significance of results could be dealt with by the
user's understanding of what was going on. Many of us who are familiar with the use of
a slide rule or a product calculator have performed this kind of error control of a
machine aided computation. A rule of thumb had it that in this mode of interactive
computation, a person could perform about 1000 reliable computations per day. 1bis
translates into approximately 0.03 operations per second for a nine hour day.

In the period 1920-1940, a breakthrough in computation was made. 1bis was the
idea of the stored program computer in which the program itself could be stored in the
computer and operated upon by the computer as if it were data. 1bis breakthrough is
credited variously to Alan Turin& Emil Post, John Mauchly and John von Neumann.
Combining this with the technological electronic developments of the 20th century led
to the rust generation of modern digital computers. These computers provided a
gigantic gain in computer power over their mechanical predecessors. In the early fifties,
these computers were able to execute on the order of 30 ftoating-point operations per
second which, in fact, were implemented as subroutine calls. 1bis was a thousandfold
gain in speed. The modem computer age is dated from this period.

Early electronic computers often represented their data as fixed-point numbers.
This imposed a scaling requiremenL Problems had to be pre-processed by the user so
that they could be accommodated by this fixed-point number representation. 1bis
pre-processing proved to be an enormous burden. It was the introduction of the
floating-point representation in computation in the early fifties which largely eliminated
this burden. But it turned out that the floating-point representation made the error
control problem even more difficulL There was no longer any hope for error control of

computations b:
desk calculators

The enormi
development of
methods, that '\I

estimates of the
trace back to C
James H. Wilki.J
the two techniq
analysis. Both f

number of oper
propagation thr,
tion of two com
estimates. The I
rather complicat
Even then, the :
even sopbisticatt

Thus, we fu
computation lul•
double precision
metic. The scien
judging the quali

1. He comp
expressio
catesa gc

2. He repea
ment, ho,

3. He rerun
in the re:
process a

These approacht
However, they m

The followiI

Two different apJ

Which one is be
equations. We fin

It seems evident 1

e assertion of its
instrument rather

mi is hardly one
that this ancient

,as supplanted by
other parts of the
Western Europe,

1own examples of
Jottfried Leibniz.
iitde later Leibniz
1S of which it was
mce, in one form
:day.
j be implemented
:.overy created an
ical computation,
iCelldants of these
the 20th century.

the appearance of
31>ment of analog
:.omputer, analog
D.
>0ned an interac
.ch operation as it
dealt with by the

iar with the use of
ffOr control of a
Jde of interactive
ODS per day. This
urday.
ade. This was the
d be stored in the
s breakthrough is
m von Neumann.
: 20th century led
uters provided a
n the early fifties,
nt operations per
u a thousandfold

d-point numbers.
ed by the user so
,resentation. 1bis
roduction of the
largely eliminated
n made the error
>r error control of

AIU'l1IMETIC OF THE DIGITAL COMPUTER 15

computations by the traditional interactive methods used in the cases of mechanical
desk calculators or the slide rule.

The enormous gain in speed and the introduction of Ooating-point mandated the
development of methods for more systematic control of errors in computation. Such
methods, that were developed in those days and are still used today, are based on
estimates of the error of each individual arithmetic operation. These ideas and concepts
trace back to Cornelius LanC2'.0S and Wallace Givens and were heavily exploited by
James H. Wilkinson and others. These methods are highly sophisticated. They led to
the two techniques of error analysis commonly called forward and backward error
analysis. Both are analytic methods. Since the computer is able to execute a large
number of operations, a large number of error estimates have to be made and their
propagation through the whole algorithm has to be studied. For instance, multiplica•
tion of two complex matrices of 100 rows and columns requires about 8 million such
estimates. The propagation of these estimates in a complicated algorithm requires a
rather complicated analysis which can only be performed in special types of problems.
Even then, the results are usually theoretical and of limited practical value. Indeed,
even sophisticated users tend to avoid this approach.

Thus, we find that other methods for judging the quality of results delivered by a
computation have arisen. We find many computers equipped with both single and
double precision and sometimes even with extended capabilities of precision in arith•
metic. The scientific computer user usually adopts one of the following techniques for
judging the quality of his output.

1. He computes a residual, i.e., he inserts the computed answer into the problem
expression and evaluates the remainder, hoping that a small remainder indi
cates a good solution.

2. He repeats his calculation in double or extended precison, checking for agree
ment, hoping that good agreement indicates a good solution.

3. He reruns his problem with slightly changed input data, checking the variation
in the results. Small variation is interpreted as stability in the computational
process and hopefully a good solution.

These approaches frequendy give good indication of the quality of a computation.
However, they may also be completely unreliable.

The following pair of equations (12) shows how unreliable method 1 may be.

0.780X + 0.563Y = 0.217,
0.913X +0.659Y=0.254.

Two different approximate solutions are proposed.

and x-o.999, Y- -1.001,
X-0.341, Y-= -0.087.

Which one is better? The usual check is to substitute them into the set of linear
equations. We find the following residuals:

0.780X + O.S63Y-0.217-= -0.001243,
and 0.913X +0.659Y -0.254 = -0.001S72,

0.780X+0.563Y-0.217-= -0.000001,
0.913X + 0.659Y - 0.254-= 0.

It seems evident that the second approximation is a better solution, since it makes the

16 U. W. KULISCH AND W. L. MlllANICEll

residuals much smaller, (-0.000001,0.) compared to (-0.001243, -0.001S72). How
ever, the true solution is X 1111 l, Y= -1, as one can verify easily. Hence, the first
approximation (X - 0.999, Y- -1.001) is much closer to the true solution.

The second traditional approach for checking the accuracy of a computed result is
to recalculate, each time increasing the number of digits with which computations are
performed. Thus, we find most computers equipped with single and double precision
and sometime even extended precison capabilities in arithmetic. The idea underlying
this second approach is closely related to the definition of the operations for the real
numbers through limiting processes which we discussed previously.

The result of such an operation was defined as being the limit of the result
obtained by operating ·on truncated parts of the expansions representing the operands.
However, the analogy. is only superficial. Indeed this approach only displaces the
problem, but does not solve it in principle. It is evident that the examples displayed
above have counterparts which demonstrate equivalent deficiencies in the double or
extended precision computation of any computer. For our simple example,

1050 + 812-1050 + 1055 + 511 -1055 -1323,

almost all digital computers will return zero, whether using single, double or extended
precision. In general, the user does not know how many digits are needed to obtain a
correct answer. To show that the third method is also unreliable, consider the two linear
equations

100000x + 99999y = b1,

99999x + 99998 y = b2 •

The following are computed values of x and y for different choices of b1 and b2.

b1 = 200000, X = 200000,
b2 =200000, y= -200000,

b1 =200010,
b2 =200010,

x= 199990,
y= -199990,

x= 200010,
y= -200010.

This seemingly regular behavior of the solution misleads us to the conclusion that the
problem is stable and that the computer solutions are reliable. To see just how badly
wrong this conclusion is, consider the totality of all solutions of the linear system of
equations corresponding to all possible choices of b1 and b2 in the following range
which contains the values of b1 and b2 already pre.1Cribed.

199990 :ii b1 ~ 200010,
199990 :S b2 ~ 200010.

The totality of solutions which comspondingly arise are

-1 800 000 ~ X ~ 2 200 000,
-2 200 000 :iY ~ 1 800 000.

Moreover these bounds are sharp. This set contains the solution x = y = 1, which is
obtained for b1 == 199999, b2-199997. '4 t

i

In numeric
the sensitivity c
highly sensitive
lem. Expression
problems. For 1

computation of
condition numt
puted solution.
are known to be

Recall now
in the early fif t
speed (10 3). The:
computers toda~
operations in as

This is a ga
fifties. Compare
calculator of tod
the significance
tion is about 5 >
desk calculator <
ing, perform as r

We now ret
process. The the
earlier translate
second of a comp
a complicated al1
with the extremel
pragmatic methoc

In other wo
calculation could
they were relative
problems which ,
body of comput•

- 0.001572). How
{. Hence, the first
lution.
computed result is

1 computations are
d double precision
he idea underlying
:ations for the real

limit of the result
1ting the operands.
only displaces the
:xamples displayed
s in the double or
ample,

louble or extended
needed to obtain a
sider the two linear

:onclusion that the
;ee just how badly
1e linear system of
1e following range

x=y=l, which is

AIUTIIME11C OF THE DIGITAL COMPUI'Ell 17

In numerical mathematics, the so-called condition number is often used to calibrate
the sensitivity of a problem to input data. A large condition number characterizes a
highly sensitive problem, while a small condition number characterizes a stable prob•
lem. Expressions for condition numbers are developed for many classes of numerical
problems. For most problems computation of the condition number is as difficult as
computation of the solution of the problem itself. For such problems employing the
condition number is not a practical method for dealing with the accuracy of a com
puted solution. For some linear matrix problems, so-called cheap condition estimators
are known to be useful for error estimation if some care is taken (111, (27), (28).

Recall now our earlier remark that the appearance of the first electronic computers
in the early fifties, i.e., the step into the computer age, meant a thousandfold gain in
·speed (103). The actual computer revolution, however, happened afterwards. The fastest
computers today are able to execute of the order of 300 million (3 x 108) floating-point
operations in a second.

This is a gain in speed by a factor of 107 over the electronic computers of the early
fifties. Compared with a person working with a mechanical desk calculator or pocket
calculator of today, this is a gain in speed of the order of 1010• See Fig. 5. To help grasp
the significance of this factor, consider the following illustration. The human popula
tion is about S x 109• So, if we equip every man, woman and child with a mechanical
desk calculator or an electronic pocket calculator, they could, while they are all work
ing, perform as many operations as only one of today's faster computers.

GN•ATIC.S
"'· .COIi) 1o'0

1c,8

1c,I

lol

10°
101

19ll T-

10·•

FIG. S. The incr«ue in computing speed.

We now return to our consideration of the error analysis of the computational
process. The theoretical methods of backward or forward error analysis discussed
earlier translate into 300 million error estimates having to be carried out for each
second of a computational process. Additionally, the propagation of these errors through
a complicated algorithm has to be studied. These techniques are no longer in balance
with the extremely enlarged speeds of todays computers. On the other band, the more
pragmatic methods 1, 2 and 3 were all crude and finally unreliable.

In other words, when the capability of computers was relatively modest, the
calculation could somehow be conuolled by the user. The users were small in number,
they were relatively sophisticated and they could hand-tune their computations. Today,
problems which are dealt with have become enormously large and ramified, and the
body of computer users comes with members of every degree of experience and

18 U~ W. KULISCH AND W. L. MillANKE1l

sophistication. It is simply no longer possible to expect computers to be controlled by
hands-on methods. There remains no alternative but to furnish the compuler with the
capability of control and validation of the computational process.

The advanced theory of computer arithmetic (18), (19) offers an approach to this
question. As motivation for advanced computer arithmetic, consider a system of linear
equations with coefficients that are representable in the computer without rounding
errors. Then all information needed for the correct solution of the problem is present in
the computer. If the problem is ill-conditioned, it may happen (as we saw earlier by
means of simple examples) that the computed result has little to do with the correct
solution of the problem. This means that information which was originally present in
the computer bas been lost by computation. The roundings are responsible for it. The
act of rounding which accompanies each floating-point operation typically discards
some digits. We may say that each rounding means a loss of information.

Then the guiding principle of an advanced computer arithmetic and e"or analysis is
to reduce the number of roundings in any particular computational process. A central
question remains: Which roundings can be omitted and which cannot?

The basic feature of advanced computer arithmetic is to augment the operator set
HI , B, ml , IZI for floating point numbers by another operation 9 which turns out to be
fundamental. m is the floating-point implementation of the inner or dot product (or
scalar product) of two vectors. Consistent with the implementation requirement of
maximum accuracy for the four basic operations, the new scalar product must be
implemented with maximum accuracy as well, i.e., with only one rounding. So, if
a=(a1,a2,· ··,a,.) and b==(b1,b2,- • ·, b,.) are two n-dimensional floating-point vectors,
the scalar product must be defined by

a 9 b :== □(t a;Xb,) =□(a1 Xb1 +a2 Xb2 + • • • +anxb,,)
,-1

for all vectors and all relevant dimensions.
Augmenting the floating-point operator set in this manner goes a long way toward

controlling the loss of information inherent to floating-point calculations. The theory of
computer arithmetic shows that with the augmented set of five floating-point opera
tions, all arithmetic operations of the most customary linear spaces of computation can
be performed with maximum accuracy. These spaces consist of the floating-point
representations of the real and complex numbers, of the vectors and matrices over these
representations and of the interval spaces over all of these.

After the four basic operations EB, B, Iii and IZI, the linear space operations, such
as the product of two matrices or the product of a matrix by a vector, are the most
fundamental operations in numerical analysis. The augmented set of five basic
floating-point operations, &I, B, mJ, IZJ and m is sufficient for the execution with
maximum accuracy of these linear space operations.

Since these linear space operations are expressible in terms of scalar products, the
five basic operations are in a sense necessary as well. We may expect that this enlarged
set of maximally accurate computer operations, consisting of linear space operations
and their interval counterparts will lead to better results in numerical computations.
The enlarged set of operations support yet another fundamental feature essential for
high accuracy in computation. The availability of exact scalar products, as well as
matrix and matrix-vector operations with maximum accuracy, make it possible to apply
a special mathematical technique in many cases, the so-called defect correction process.
1bis process is often of scalar product type. Information that has already been lost by

?"

i
t

rounding effect
tion. Such corrc
pie, they can pr
guarantees for t
techniques with
verification or •
bounds for the
delivers a proof
the computed b
rem. We refer tc
for the problem,

For partic1
within a specifit
to the user. Mod

These gene1
bra, such as sc
arithmetic expre
mization. These
This capability f,
arithmetic opera
highly ill-condi ti
may fail to prod1

The reader
which only mal!
operations 8 , 8
also be bad, eve
uniqueness is pr
preview and moti
given in the chap

4. Advanced
metic in higher
numbers, of real
complex interval
interval matrices.
spaces are defmc
semimorphism. T
ones which are bi

To make tht
operations. Comi:
the four floating•
corresponding op,
(W, V, V, W') anc
provided. In the h
arithmetic operati
for them in terms
number, as the Ca!

For instance,
bers or a=(a1,a:

o be controlled by
computer with • the

D approach to this
a system of linear
without rounding

.>blem is present in
we saw earlier by
o with the correct
:iginally present in
aonsible for iL The
typically discards

:ion.
nd e"or analysis is
process. A central
ot?
nt the operator set
aich turns out to be
or dot product (or
:>n requirement of
product must be

e rounding. So, if
1ting-point vectors,

a long way toward
ions. The theory of
aating-point opera
,f computation can
the floating-point

matrices over these

:e operations, such
,ctor, are the most
set of five basic

the execution with

.ca1ar products, the
t that this enlarged
~ space operations
ical computations.
!ature essential for
·oclucts, as well as
it possible to apply
correction process.
lready been lost by

AJUTHMETIC OF THE DIGITAL COMPUTER 19

rounding effects during an initial computation can often be recovered by defect correc
tion. Such corrections can be made to manmiu floating-point accuracy, and in princi
ple, they can provide arbitrary accuracy. The corresponding interval operations permit
guarantees for these highly accurate results to be obtained also. Combining these two
techniques within a fixed-point iteration framework, allows us to append a so-called
verification or validation pl'OeeU to the computation. This process supplies a set of
bounds for the solution to the problem being computed. Moreover, the computer
delivers a proof of the existence and uniqueness of the solution of the problem within
the computed bounds by verifying the hypotheses of an appropriate fixed-point theo
rem. We refer to the bounds and the existence proof as computer generated guarantees
. for the problem, simply as guaran~.

For particularly difficult problems, the validation process may not terminate
within a specified time limit or iteration number limiL In this case, a warning is given
to the user. Modification of the solution method is then in order.

These general techniques can be applied to fundamental problems of linear alge
bra, such as solving linear systems of equations, matrix inversion, polynomial or
arithmetic expression evaluation, eigenvalue-eigenvector computation and linear opti
mization. These problems are usually solved with maximum accuracy and guarantees.
This capability for these problems can be interpreted as providing additional high order
arithmetic operations. Experience bas shown that these methods work well even for
highly ill-conditioned problems. For profoundJy ill-conditioned problems, the system
may fail to produce a result. In this case, notification is supplied to the user.

The reader should contrast this methodology with customary numerical practice,
which only makes use of elementary computer arithmetic, that is, the four basic
operations El, B, m and rz:I. Results, which are supplied, are often good, but they can
also be bad, even arbitrarily so. Usually no information about bounds, existence or
uniqueness is provided by the conventional computation. This concludes our brief
preview and motivation of advanced computer arithmetic. A more detailed discussion is
given in the chapters which follow.

4. Advanced computer arithmetic. In this chapter, we deal with computer arith
metic in higher mathematical spaces (product spaces) such as spaces of complex
numbers, of real and complex vectors, of real and complex matrices, of real and
complex intervals, as well as the spaces of real and complex interval vectors and
interval matrices. Arithmetic operations in computer representable subsets of these
spaces are defmed by a general mathematical mapping principle which is called a
semimorphism. These arithmetic operations are distinctly different from the customary
ones which are based on elementary computer arithmetic.

To make the differences dear, we begin with a brief review of the customary
operations. Computers built for scientific computation are customarily equipped with
the four floating-point operations 8, B, liJ and rz:I. Sometimes the eight additional
corresponding operations which employ the monotone downwardJy directed roundings
(~, V, V, V/) and the monotone upwardly directed roundings (A,A,A,/A) are also
provided. In the higher mathematical spaces, which we listed in the previous paragraph,
arithmetic operations are performed by evaluating well-known mathematical formulas
for them in terms of the given elementary floating-point operations (four or twelve in
number, as the case may be).

For instance, if a - a1 + ia2 and /J = /J1 + i/J2 are two complex floating-point num-
bers or a-= (a

1
,a

2
, ···,a,.) and b-=(b

1
,b

2
, • • ·, bn) are two vectors of floating-point

20 U. W. KULISCH AND W. L. MillANKER

num~ the following product formulas are well known.

a X/J=a1 X/J1 -a2 X/J2 +i(a1 X/J2 +a2 X/J1),

a·b=a1 Xb1 +a2Xb2+ • • • +anxb,..

Their computer approximations are now defmed by rewriting these formulas in terms
of the given floating-point operations, i.e.,

«mi /J-= «1 mJ /J1 B «2ml /J2 + i(«1 Iii /J2 IE «2 lil/J1),

a liJ /j-a1lilb11Ea2lilb2EB • • • EBanmJbn.

In §2 we showed, by means of simple examples, that the computational error associated
with these expressions. ,;nay become quite large and that this error depends critically on
the given data.

Let us now make a tabulation of these higher spaces of computation. In addition
to the integers, numerical algorithms are usually defined in the space (set) R of real
numbers and vectors YR and matrices MR over the real numbers. The corresponding
complex spaces C, YC and MC also occur. All these spaces are ordered with respect to
the order relation ~ . In all product sets (for us all sets other than R), the order relation
is defined componentwise. The order relation is a partial order. Using the order relation
;:s , the notion of intervals can be defmed in all these spaces. If a~ b, an interval [a, b]
is the set of all elements between them. That is [a, b] := { x I a~ x ~ b}. If we denote the
set of intervals over an ordered set { M, ~} by IM, we obtain the spaces IR, IVR,
/MR and IC, IVC, IMC. See the second colu~ in Fig. 6.

1

PR
PVR
PMR

PC :>
PVC :>
PMC :>

2
R

VR
MR

JR
IVR
/MR

C
vc

MC

JC
/VC
IMC

3
:> R
:> VR
:> MR

:> IR
:> IVR
:> IMR

:> CR
:> VCR
:> MCR

:> ICR
:> /VCR
:> IMCR

F10. 6. Tobi~ of ,pat:a ocauring in nummcal computations.

Most algorithms in numerical analysis are defined in one or several of these spaces.
However, these algorithms cannot usually be executed in these spaces. For execution,
we use computers. A computer contains only a subsystem R of the real numbers. R is
the set of computer reals or floating-point numbers. (Sometimes several such systems of
differing precision are available.) Vectors (n-tuples), matrices (n x n-tuples), complexifi
cations (pairs), vectors and matrices of such pairs, as well as the corresponding sets of
intervals, can be defined in terms of R. Doing so, we obtain the spaces YR, MR, JR,
IYR, IMR, CR, YCR, MCR, /CR, IYCR and IMCR, which are listed in the third
column of Fig. 6. We indicate set-subset relations in Fig. 6 by means of inclusion
symbol=>.

Having described the sets listed in the third column of Fig. 6, we tum to the

I
r

..
41

arithmetic opera
essentially diffe1
approximate the
operations are "'
second column. •
of M. The powe1
Now if • is an~
defined in the pc

This definition t

Summarizing, w,
element of every
ideal mathemati,
in the subsets or
principle.

Let M den<
subset on its rigb
as follows:

(RG}

Here □: M-.N,

(Rl) □a=a

(R2) a~b=
(R4) o(-a

In the case of the
this case, we also

(R3)

Property (R3) is 1

ca1 settings, a set
are seemingly no
executable opera
corresponding op
principle. It has 1

the image set is ti
been executed in

Since the ope
implementable, v
set-subset pairs o
established betwe

A somewhat
It can be shown
cannot be establli

Now we CaJ

further. Doing so

: formulas in terms

ul error associated
!pends critically OD

1tation. In addition
ace (set) R of real
The corresponding
:red with respect to
t, the order relation
g the order relation
~, an interval [a, b]
} . If we denote the
spaces /R, /VR,

ral of these spaces.
:es. For execution,
real numbers. R is
ral such systems of
:uples), complexifi
n:sponding sets of
ices VR, MR, JR,
listed in the third

oeans of inclusion

6, we tum to the

ARITHME11C OF 111E DIGITAL COMPUTER 21

arithmetic operations to be defined for these sets. Our definition of these operations is
essentially different from the conventional one. These operations are supposed to
approximate the operations in the corresponding sets listed in the second column. The
operations are well known in any of the spaces R, YR, MR, C, VC and MC of the
second column. The powerset PM of any set M is defined as being the set of all subsets
of M. The powersets of the sets just enumerated are listed in the fmt column of Fig. 6.
Now if • is any operation defined in M, then a corresponding operation • can be
defined in the powerset PM as follows.

A• B :a: {a• blaEA AbeB} for all A, Be PM.

This definition extends every operation of M into the corresponding powerset PM.
Summarizing, we can now say that the operations in the sets listed in the leftmost
element of every row in Fig. 6 are always known. Of course, all of these operations are
ideal mathematical operations. We now use these ideal operations to define operations
in the subsets on the right-hand side of Fig. 6, row by row, using a general mapping
principle.

Let M denote any set of Fig. 6 in which the operations are known and N the
subset on its right in the same row. For each • in M, we defme an operation Iii in N
as follows:

(RG) a IE b :== a(a • b) for all a, beN and for all •.

Here □: M ➔ N denotes a mapping with the following properties.

(Rl)
(R2)
(R4)

□a==a for all aeN
a:;b:o□a:;□b for all a, beM
□(-a)= -□a for all aeM

(rounding).
(monotonicity).
(antisymmetry).

In the case of the interval sets of Fig. 6, the order relation ~ means set inclusion £; . In
this case, we also require that the rounding □ has the property

(R3) a~□a for all aeM (upwardly directed).

Property (R3) is referred to as the property of isotony of the rounding □. In mathemati
cal settings, a set with operations is sometimes considered where, in fact, the operations
are seemingly not executable. Mathematicians then usually look for another set with
executable operations and try to arrange an isomorphism between the two sets and
corresponding operations. Isomorphism is the strongest relevant mathematical mapping
principle. It has the property that the inverse image of the result of a computation in
the image set is the result that would have been obtained if the computation could have
been executed in the original set.

Since the operations in the leftmost element of each row of Fig. 6 are not computer
implementable, we have a situation of the type just described. However, in Fig. 6
set-subset pairs occur which are of different cardinality, and isomorphisms cannot be
established between such sets.

A somewhat weaker mathematical mapping principle is that of a homomorphism.
It can be shown by simple examples (19) or by a theorem that even homomorphisms
cannot be established between the relevant sets in Fig. 6.

Now we can try to weaken the mapping properties of a homomorphism still
further. Doing so, we reach a mapping correspondence with our properties (RG), (Rl),

22 U. W. KULJSCH AND W. ~- MlllANICEll

(R2), (R3), (R4). These properties can be derived as necessary conditions for a homo
morphism between ordered algebraic structures (19). Therefore, we call the mapping,
which they characterize, a semimorphism. The mapping principle of semimorphism
between relevant sets in Fig. 6 seems to be as far as we can go toward homomorphism.
We also define the outer operations that occur in Fig. 6 (scalar times vector, matrix
times vector, etc.) by corresponding semimorphisms.

It is important to understand that the arithmetic operations for the product sets
defined by semimorphism are different in general from those which arise if only
elementary floating-point arithmetic is furnished. Semimorphism defmes operations in
a subset N of a set M directly by making use of the operations in M. It makes a direct
link between an operation in Mand its approximation in the subset N. For instance,
the operations in MCR (see Fig. 6) are directly defined by the operations in MC, and
not in a round about way via C,R,R, CR and MCR as it would have to be done by
using the elementary arithmetic only.

It is easy to see that repetition of semi.morphism is again a semimorphism. The
operations in the leftmost element of every row in Fig. 6 are all well known. This allows
us to define operations in all sets of Fig. 6 by semimorphism. As already noted, the
outer operations in Fig. 6 are defmed by semimorphism also.

The new operations now defined in all sets of Fig. 6 are of an accuracy which we
call maximal for all admissible roundings. 'Ibis means that between the correct result of
an operation and its approximation in the subset no other element of the subset may be
found (19). Maximal accuracy guarantees the result to be within one unit in the last
place. This fundamental result follows readily from (RO), (RI) and (R2). For instance,
in the case of multiplication of two real or complex floating-point matrices a=(a;i)
and b=(b;i), (RO) means

a□b:= D(axb):c□(r, a;1,Xb1c1).
k-1

Here the rounding is defmed componentwise. That is, there occurs only one single
rounding error in each component of the product matrix, even for very large n.
Compare this with the result that is obtained when only elementary floating-point
arithmetic is used. Earlier we saw that in such a case, 8 million roundings (each
equivalent to a loss of information) are performed in a multiplication of two 100 x 100
complex floating-point matrices. Compare this first to one rounding in each of only
10,000 components of the resulL Compare this secondly with only a single rounding
altogether in terms of the space MCR where the multiplication is actually defmed. 'Ibis
number one is not a fiction since no matrix in MCR lies between the exact result and
the result computed by the new semimorphic operation. These new operations are not
only much more accurate, they are of a simpler form as well. Thus, they allow a simpler
error analysis of numerical algorithms, and they lead to more accurate error estimates
and bounds. All of this leads to a control of errors in computation by the computer
itself as we shall see.

4.1. Comments on tbe derivation of semfmorpldsms. We have noted that certain
essential properties of a semimorphism can be obtained as necessary conditions for a
homomorphism between ordered algebraic structures. There are still other possibilities
of deriving the properties of a semimorphism. They can be derived directly by consider
ing special models of sets in Fig. 6. For instance, consider the mapping of the powerset
of the complex numbers PC into the intervals of the complex numbers IC. An interval
(a, b] of two complex numbers a and b with a:;; b is a rectangle in the complex plane.

J
i.
r,
~

~ ! ..
"'!

d
;!
.~

I

If we multiply tv
(see Fig. 7), we d
AXB of the pow

We require t
do is to map the i
7 this is shown a
see that this mapJ
and (RO) of a sei

If the set A x B i
enlarge the set A
(R2) holds. (R3)
(RO) viz, A C!1 B =

Asa second•
numbers a and b
number (Fig. 8).
floating-point scr
fulfills (Rl), (R2)
operation is defm.

Simple intuiti
spaces in Fig. 6. T
certain basic math
and vectoids. Thes
and properties ca
deriving computer

In the case of
is very useful to
associated with the:
~- They are defmc

(RJ)

itions for a homo
call the mapping,
of semimorphism
d homomorphism.
nes vector, matrix

,r the product sets
hich arise if only
6nes operations in
•. It makes a direct
'.t N. For instance,
1tions in MC, and
ave to be done by

mrimorphism. The
310wn. 1bis allows
already noted, the

3CCUJ'acy which we
he correct result of
• the subset may be
ne unit in the last
:R2). For instance,
matrices a= (a ;J)

rs only one single
for very large n.

tary floating-point
Il roundings (each
n of two 100 x 100
1g in each of only
a single rounding

ually defined. This
1e exact result and
operations are not
1ey allow a simpler
·ate error estimates
o by the computer

noted that certain
ry conditions for a
I other possibilities
irectly by consider
ing of the powerset
n JC. An interval
the complex plane.

AlUTHMETlC OF THE DIGITAL COMPUTER 23

If we multiply two complex intervals A and B in the sense of the powerset operation
(see Fig. 7), we do not generally obtain an interval result, but a more arbitrary element
A x B of the powerset PC.

C

~

Flo. 7. Multiplimlion of complt:x imnvals.

We require that the result of an interval operation be an interval. The best we can
do is to map the powerset product A x B onto the least interval that contains it. In Fig.
7 this is shown as a rectangle fitting snugly around the set A x B. It is not difficult to
see that this mapping □: PC ➔ JC is a rounding having all of the properties, (Rl, 2, 3, 4)
and (RG) of a semimorphism. In the present case, the order relation is set inclusion ~ .
If the set A x B is already an interval, the rounding has no effect, i.e., (RI) holds. If we
enlarge the set A x B somewhat, this enlarges the least interval that includes it also, i.e.,
(R2) holds. (R3) is obvious and (R4) holds by reasons of symmetry. The result fulfills
(RG) viz, A l!JB=□(A XB), by construction.

As a second example, consider the basic pair R and R. If we add two floating-point
numbers a and b (row 1), then the correct sum c= a+ bis not in general a floating-point
number (Fig. 8). To obtain a floating-point number, we round the result into the
floating-point screen. Referring to Fig. 8 one can see that the process of rounding
fulfills (RI), (R2) and (R4). In this case, the order relation is ~ . The floating-point
operation is defmed by (RG): a&.Jb=□(a+b).

c•a•b

-+-I -+1--11 , +1-1!~1-+-1 _..,, ~---•• R
O • b Cc•aEh,

FIG. 8. Floating-point addition.

Simple intuitive pictures of the operations are not available for all pairs of relevant
spaces in Fig. 6. The computer structures in the third column of Fig. 6 are examples of
certain basic mathematical structures, the ·so-called ordered or weakly ordered ringoids
and vectoids. These basic structures are invariant under semimorphism. These concepts
and properties cannot be discussed here. It turns out that they are very useful for
deriving computer implementable algorithms for many operations [19).

In the case of the mapping of the real numbers into the floating-point numbers, it
is very useful to provide two additional roundings and the arithmetic operations
associated with them. These two roundings are the monotone directed roundings V and
fl. They are defmed by (Rl), (R2) and

(R3) '\la~a and a~Lla for all aeM.

24 U. _W. ICULISCH AND W. L. MillANitEll

The corresponding operations are defined by

a~b:= V(a•b) and a&b:-~(a•b)

for all a, be N and all • e { + , - , x , /} .
(RG)

The monotone downwardly directed rounding V maps the entire interval between
two neighboring Boating-point numbers onto the lower bound of this interval. The
monotone upwardly directed rounding ~ maps such an interval onto its upper bound.

4.2. Implementation of advanced aridtmetic on computers. Having used semimor
pbism (property (RG)) to define all of the many floating-point arithmetic operations
associated with Fig. 6, we next deal with the implementation of these operators on
computers. We seek implementations by means of fast algorithms. The resulting meth
ods are comparable in speed to implementations corresponding to operations based on
elementary computer arithmetic only.

At fll'St sight it seems doubtful that formula (RG) can be implemented on com
puters at all. To determine the approximation a Iii b, the result a • b seems to be
called for. In general, a• b will not be representable and a fortiori not executable on
the computer.

Thus a• b is not available for implementation of a m b. We use isomorphic
relationships to deal with this problem. It can be shown that for the operations defined
by semimorpbism (RG), there exist isomorphic computer executable representations in
all cases of Fig. 6. A detailed analysis of this question is given in (19]. For the
experienced reader, we offer some comments about this question.

Formula (RG) defmes computer operations. While showing that there exist iso
morphic representations of the computer representable subsets, only the structure of
these subsets and their operations in N defined by semimorpbism may be used.
Therefore, a careful analysis of this structure has to made in advance. This structure is
different from the one in M with which mathematicians usually work.

The theory of computer arithmetic shows that all operations that occur in the third
column of Fig. 6 can be realized by a modular technique. This calls for a module where
the following fifteen operations are made available on the computer. These operations

1±1 B [!) IZI GJ

w V ~ VJ w
A A A IA A

are sufficient for the computer implementation of all operations that occur in the third
column of Fig. 6. We shall comment on the remaining part of the implementation
question in §6. Here riJ , • e { +, - , x, /) denotes the semimorphic operations de
fmed by (RG), using some particular monotone and antisymmetric rounding
(Rl, Rl, R4), such as rounding to the nearest number of the screen. Likewise T
respectively &. , • e { +, - , x, /) denote the operations defined by (RG) and the
monotone downwardly respectively upwardly directed rounding. m , ~, and A de
note three scalar products with maximum accuracy. That is, if a=(a;) and b-{b;) are
vectors of floating-point numbers, then

a0b:= O(a1 Xb1+a2 xb2 + ••• +a,.xb,.) for all Oe{□,V,A}.

.

I

The multiplica
exact multiplic
implementatioi
to provide the
adding to an ir
and unroundec
scalar produc~
rounding at th
requirements f
computational

Of these 1:
the four operati
W, V, ~, Via:
operations for
metic of the so
m,W,A,•e
guarantees intc
These two fea_tl

4.3. Impler
scalar products!
tion should be 1

where the comr
maximum accu:
store. The size
base, mantissa 1
dent of the dir

Access to the le
product a;Xb;
range 2el ;Se~:

on the comput(
mantissas, i.e., c

If one of t
register of lengt
exponent 0, if tb
one place to the
ing shift to the

e { +, - , X, /}.

: interval between
this interval. The
its upper bound.

ng used semimor
bmetic operations
iese operators on
1e resulting meth
-erations based on

emented on com-
1 • b seems to be
not executable on

e use isomorphic
tperations defined
representations in
in [19). For the

at there exist iso
y the structure of
m may be used.
:. This structure is

occur in the third
>r a module where
These operations

occur in the third
e implementation
lie operations de
unetric rounding
-een. Likewise ~
:,y (RG) and the
, , 'f', and A de
;) and b-(b;) are

J,V,~}.

AIUTHMETIC OF THE DIGITAL COMPUTER 25

The multiplication and addition signs on the right-hand side of the expression denote
exact multiplication and summation in the sense of real numbers. Comments on the
implementation of the operations m, B, m, and l1J were alre.ady given in §2. It is useful
to provide the three scalar products, El , ~, A, in two different modes: the first one
adding to an initial value zero and the second one adding to the result of a preliminary
and unrounded scalar product The second mode makes it possible to evaluate sums of
scalar products C(u • v+ x ·y) or sums of matrix products C.:.A • B + C • D)with only one
rounding at the end of the computation. These modes of the scalar product are key
requirements °for the defect correction process which is used in the self-validating
computational procedures which we shall treat in §5.

Of these 15 fundamental operations above, traditional numerical methods use only
• thefour operations 1±1, B, Iii, and IZJ. Interval arithmetic employs the eight operations

W, V, V, Vl and A, A, A ,IA . These eight operations are computer equivalents of the
operations for real intervals, i.e., of interval arithmetic. The recently proposed arith
metic of the so-called IEEE standard offers 12 of these 15 fundamental operations:
liJ , l7, A , • e { +, - , x, /} [10), [15]. Roughly speaking, interval arithmetic brings
guarantees into computation while the three scalar products deliver high accuracy.
These two features should not be confused. We return to these matters in §5.

4.3. Implementation of scalar products. Because of the importance of optimal
scalar products, we comment on their implementation on computers. Such implementa
tion should be made by means of fast hardware routines. A black box technique is used
where the components a; and b;, i=l(l)n, are the input and the scalar products with
maximum accuracy El , W, & the output. See Fig. 9. The black box requires a local
store. The size of the local store depends on the data formats in use (number system
base, mantissa length and exponent range). In particular, the siz.e is essentially indepen
dent of the dimension n of the two vectors a=(a;) and b=(b;) to be multiplied.

a;,b, n

--.. Oia;xb;
;.1

n

c • 0 I a;><b;,
i•I

FIG. 9. The black box for scalar products.

Access to the local store should be much faster than access to main storage. The full
product a, x b; is required. This mandates a mantissa of 2/ digits and an exponent
range lel ~ e ~ 2e2. This reduces the problem to an implementation of the sum

n

0 I: C;, Oe{□,V,6}
i•l

on the computer. Here the c,, i=l(l)n, denote Boating-point numbers of 2/ digit
mantissas, i.e., c;eR(b,2J,2e1,2e2).

If one of the summands c, has exponent 0, its mantissa can be expressed in a
register of length 2/. H another summand has exponent 1, it can be expressed with
exponent 0, if the register provides further digits on the left and the mantissa is shifted
one place to the left. An exponent -1 in one of the summands requires a correspond
ing shift to the right. The largest exponents in magnitude that may occur in the

26 U. W. KULISCH AND W. L. MlllANKER

summands c, are 2e2 and 21ell. This shows that all summands can be expressed (in a
type of fixed-point representation) in a register of length 2e 2 + 21 + 21ell without loss of
information. If the register is built as an accumulator, all summands could even be
added without loss of information. In order to accommodate possible overflows, it is
convenient to provide a few, say t more digits of base b on the left In such an
accumulator, every such sum or scalar product can be added without loss of informa
tion. As many as b' overflows may occur and be accounted for without loss of
information. In the worst case, presuming every sum causes an overflow, we can
accommodate sums with n ~ b' summands.

1t1 2, I 21~11

Actually the superlong accumulator may be replaced by a local store of size
d== t+ 2e2 + 21+ 21ell and an adder of size approximately 3/. The summands are all of
length 2/. The local store is organized in words of length /. Since the summands are of
length 2/, they fit into a part of length 3/ of this local store. This part of the store is
determined by the exponent of the summand. We load this part of the store into an
accumulator of length 3/. The summand mantissa is placed in a shift register and is
shifted to the correct position as determined by the exponent. Then the shift register
contents are added to the contents of the accumulator. Instead of the shift register in
Fig. 11, a cross point switch may be used to achieve a faster parallel implementation.

1, 1 I
local store

1...,11_1 _11 ___ , ___ 1 accumulator

.,_.....,.~..,....,..,_I 1hift register

21

FIG. 11. Addition proceu for scalar prodtJCts.

An addition into the accumulator may produce a carry. To accommodate carries,
we enlarge the accumulator on its left end by a few more digit positions. These
positions are filled with the corresponding digits of the local store. If not all of these
digits equal b-1, they will accommodate a possible carry of the addition. Of course, it
is possible that all the.1e additional digits are b-1. In this case, a loop has to be
provided that takes care of the cany and adds it to the next digits of the local store.
This loop may need to be traversed several times.

Other addition techniques or carry handling processes are possible. While the
addition process described was in terms of hardware registers, it can, of course, also be
simulated in software. For a more detailed discussion of these principles, see (8) (9),
(20). Special purpose long accumulators have appeared earlier in computer design (22).

Independent of questions of accuracy, conventional computation of the scalar
product using elementary floating-point arithmetic only is a far slower process than the

one just describe
1. The optJ

by incre.
oroptim

2. Someda
3. The aver

length 3/
4. The mai

addition
avoided 1

Figure 12 illustr
computation. Th
Arithmetic and,
chapter we deal
Computer Arlt.ht
that is to matrix i

s. Extemioa t
of the five basic o
0 e {a, V, ~} suf:
accuracy in the C(

interval correspond
fundamental prob:
eigenvalue-eigenvec
usually be solved "
cases. Furnishing t
process of their sol
lions.

. be expressed (in a
!lell without loss of
mds could even be
ible overflows, it is
te left. In such an
,ut loss of infonna
or without loss of
overflow, we can

local store of size
munands are all of
e summands are of
part of the store is
f the store into an
bift register and is
D the shift register
:he shift register in
mplementation.

:ommodate carries,
t positions. These
If not all of these

.ition. Of course, it
a loop has to be
of the local store.

ossible. While the
, of course, also be
1ciples, see (8) [9],
puter design [22).
tion of the scalar
::r process than the

AIUTHMETIC OF THE DIGITAL COMPUTER 27

one just described. Some reasons for this are:
1. The optimal scalar product algorithm can locate a subsequent operand simply

• by increasing the current address, thus avoiding complicated index calculations
or optimimtion techniques.

2. Some data transports to and from the stack and some range checks are avoided.
3. The average shift of the summands into proper position in the shift register of

length 3/ is shorter than in the case of a standard addition technique.
4. The main step in a scalar product computation: s :-= s +ax b contains one

addition and one rounding. This rounding, as well as a normalization step, are
avoided by the original algorithm.

Figure 12 illustrates the steps of development of arithmetic as a basis for scientific
COJllPUtation. The rust three levels, Eementary Computer Arithmetic, Basic Computer
Arithmetic and Advanced Computer Arithmetic have now been discussed. In the next
chapter we deal with the extension of ideas and capability to so-called Higher Order
Computer Arithmetic, namely to the fundamental algorithms of numerical analysis,
that is to matrix inversion, linear system solving and so forth.

ADVANCD) C'ONPUR& .dJTKWETIC

~-.._ _,_...,__.o.,n-
IGGHU OIIOU COIO'UTla umuanc
...,,...__.._s,-..
...... ----·---·

SCIENTIFIC COMPUTA TJON

DEYELOl'l,CENT OF COMPUTD .urnocE11C

DOADENING 1HE IA5I: FOa SCIEN11PIC COMPU1'Aff01'1

FIG.12

S. Extemion to self-validating method.I. In §4, we noted that computer realization
of the five basic operations ®, e, ®, 0, G) for each of three different roundings
0 e {a, V, ~} suffices for an implementation of the arithmetic operations of maximal
accuracy in the commonly used linear spaces of scientific computation and their
interval correspondents. In this chapter we indicate how these operations are applied to
fundamental problems in linear algebra such as linear systems of equations,
eigenvalue-eigenvector computation and optimization problems. Such problems can
usually be solved with high, even maximum accuracy, even in severely ill-conditioned
cases. Furnishing the solution of these problems with maximal accuracy allows the
process of their solution to be interpreted as additional high order arithmetic opera
tions.

28 U. W. KUUSC11 AND W. L. MlllANKER

Roughly speaking, it is the scalar products with maximal accuracy together with
other techniques which deliver the high accuracy of these higher order operations, while
it is interval arithmetic which delivers guarantees. Taken together, these features pro
vide the basis for an automatic validation process for the computation being per
formed. Interval arithmetic has been used in numerical mathematics for about 25 years,
and highly sophisticated methods have been developed [l], (2), [22), [23), [S10). An
extensive list of references to interval mathematics can be found in [2]. Interval arith
metic has often been criticized since its naive use may deliver bounds which are
unreasonably large, and thus, do not contain much information about the solution of
the problem. 1bis • has been interpreted as a failure of interval arithmetic for delivering
high accuracy. 1bis criticism is fundamentally misdirected. Interval arithmetic is the
only computational tool so far available that incorporates guarantees as part of the
basic computational process. It is very useful for this purpose. High accuracy is not
intrinsic to interval arithmetic. High accuracy is obtained by use of the process of
residual correction. There are well-known limitations to residual correction. It is our
use of the optimal scalar product which makes residual correction effective. It is the
combination of these two features, namely, interval arithmetic and residual correction
with the optimal scalar product which delivers guarantees with high or even maximum
accuracy.

We give our discussion of an extension of advanced computer arithmetic to
fundamental problems of numerical analysis with an informal description of how these
methods work. As a first step, an initial approximation to the solution of the problem is
computed by some favored method such as Gaussian elimination in the case of a linear
system. The quality of this initial guess is occasionally critical for the success of the
next step. A second and basic step is to cast the problem to be solved into an iterative
solution process. The iteration is pursued in the so-called residual correction mode.
This is a a well-known computational technique in which, at each iterative step, the
residual or defect in the current approximation is computed and used to modify the
approximation. Here the precise computer arithmetic and in particular, the precise
scalar products come into play. As the quality of the approximation iteratively im
proves and the values of the defects or residuals diminishcorrespondingly, further
correction by this process becomes critical. To refme something already of high quality
requires the use of more highly refined attributes. The accurate approximation can only
be made more accurate with an ever more accurate calculation of the residual. Less
figuratively, we note that as the correction process continues, the successive residuals
tend toward 1.ero. Thus, computation of the residual is characterized by an increasing
degree of cancellation. Then to achieve any particular number of leading digits in the
determination of a residual requires increasingly more accuracy in its computation. The
relative accuracy needed does, in fact, depend on the problem, and for some problems,
it can be quite large. In technical terms, ill-conditioning of a problem grades the degree
of accuracy needed in residual computation for correction of the current iterate. 1bis is
the point where the optimal scalar product plays a critical role. By using optimal scalar
products in the adding mode, residuals may be calculated to all relevant figures for
correction. 1bis is the basic process, by means of which high accuracy is obtained. By
contrast, if only elementary floating-point arithmetic is used, any given precision
(single, double, extended) in which this calculation might be performed, could prove to
be inadequate for correction of the iterate beyond a certain poinL This point is quite
vulnerable to the ill-condition of the problem, the latter in general unknown.

How do we obtain verified results? This is where interval arithmetic, along with the

optimal dot pro
and their interv;
mode of comp1
intervals. This i:
the pointwise p
interval arithme
interval arithme
naive interval ar:

Here a new
residual correcti,
that the distance
it is this propen
now play this co1
Here once again
contraction is at
interval arithmet:

Finally, a la
the iteration prqc
theorem is used J
iteration process
interval, then tha·

• ThefI.Xec
• The cont
• The fmaJ

inadequa
process e
arbitrary

The mappinJ
therefore, other c1
is moreover comp

• tion of the mappir
The process t

cation or validatic
uniqueness of the
are sometimes als
istence, uniquene5
stress that the val
computer is not p
being used to veriJ
that provide result
problems of nume
eigenvalue-eigenvo
optimization prob)
differential equatio

In certain exb
validation. In this c
order. All this is ir
may be supplied in
proper warning.

:uracy together with
ler operations, while
, these features pro
putation being per
s for about 25 years,
:221, (231, [S10]. An
D (2). Interval arith-
bounds which are

bout the solution of
ametic for delivering
'81 arithmetic is the
ttees as part of the
jgh accuracy is not
e of the process of
:orrection. It is our
1 effective. It is the
l residual correction
1 or even maximum

puter arithmetic to
:iption of how these
:,n of the problem is
. the case of a linear
• the success of the
led into an iterative
al correction mode.
b iterative step, the
used to modify the
~cular, the precise
.tion iteratively im
spondingly, funher
!ady of high quality
·oximation can only
f the residual. Less
successive residuals
ed by an increasing
eading digits in the
.s computation. The
for some problems,
11 grades the degree
rrent iterate. 1bis is
lSing optimal scalar
relevant figures for
acy is obtained. By
ny given precision
n~ could prove to
This point is quite
lknown.
tetic, along with the

AlUTHMETIC OF 11IE DIGITAL COMPUTER 29

optimal dot products~ and A with the directed roundings (upwards and downwards)
and their interval equivalents play their critical role. At some point in the iteration, the
mode of computation is switched, so that the data types being employed become
intervals. 1bis point is chosen adaptively using a criterion which detects saturation in
the pointwise process. Thereafter, the residual correction process is continued using
interval arithmetic induding optimal scalar products. In the traditional use of naive
interval arithmetic, this could be a counter-productive step, since as is well known,
naive interval arithmetic often swells the size of the intervals which it handles.

Here a new and imponant feature is brought into play. The numerical process of
.residual correction is a contracting process in general. This mathematical term means
that the distance between any two data is reduced by each step of the process. Indeed,
it is this property which makes the iterative methods of numerical analysis work. We
now play this contraction against the tendency of the swelling of the interval arithmetic.
Here once again, use is made of the optimal (interval) scalar product. In practice the
contraction is able to dominate. The resulting process is a residual correction using
interval arithmetic where the intervals contract.

Finally, a last tactic is brought into play. When one of the intervals occurring in
the iteration process is enclosed within its predecessor interval, the Brouwer fixed point
theorem is used for validation. This theorem asserts that when a mapping, such as our
iteration process with intervals, results in an interval which lies within the predecessor
interval, then that mapping has a fixed point within the interval.

• The fixed point statement is equivalent to the existence of the solution.
• The contraction of the mapping provides uniqueness of the solution .
• The fmal interval presents a set of bounds for the solution. These bounds, if

inadequately sharp, may be improved by that very same iterative correction
process employing the optimal scalar products already used. Improvement to
arbitrary accuracy is possible in principle.

The mapping property of contraction may he difficult to verify. In practice,
therefore, other criteria for establishing uniqueness are used. One such property which
is moreover computer verifiable is retraction, i.e., strict inclusion of a proper lineariza
tion of the mapping.

The process that establishes the three properties, displayed above, is called verifi
cation or validation of the result of the computation. It establishes the existence and
uniqueness of the solution of the problem within the computed bounds. (Such methods
are sometimes also called £-methods (corresponding to the German words for ex
istence, uniqueness and containment: Existenz, Eindeutigkeit, Einschliessung)). We
stress that the validation is an automatic process performed by the computer. The
computer is not per se proving existence and uniqueness of a solution. It is simply
being used to verify the hypotheses of a theorem which furnishes this proof. Methods
that provide results of high accuracy with guarantees are available for many standard
problems of numerical analysis, such as: linear systems of equations, matrix inversion,
eigenvalue-eigenvector computation, polynomial and arithmetic expression evaluation,
optimi7.ation problems, nonlinear systems of equations and even for problems with
differential equations (2), (13), (14), (16), (24), (26).

In certain extremely ill-conditioned problems, the system may fail to produce a
validation. In this case, the user is notified. A modification of the solution method is in
order. All this is in sharp contrast to conventional numerical packages where results
may be supplied in such cases which deviate arbitrarily from the exact results without a
proper warning.

30 U. W. KULJSCB AND W. L. MlllANKEll

S.1. lmpredse data. Advanced computer arithmetic, as we describe it here, in
cludes the operations for intervals over all the commonly used linear spaces of compu
tation. Thus, scientific problems which themselves furnish data of limited accuracy are
conveniently accommodated. Input data, which are not precisely known may be speci
fied as an interval. In such a case, the results are intervals which are verified to contain
all potential results which can arise from data values within the specified intervals. The
results, of course, cannot be made more accurate than the data allow them to be, but
verified results with guarantees, i.e., validation can generally be supplied.

The fact that computers can be used to provide such qualitative statements as the
existence and uniqueness of the solution of a particular problem within the computed
bounds by means qf arithmetic computation opens a new dimension for scientific
computation. Such a computer is no longer merely a fast calculating tool, but a
scientific instrument of mathematics. Moreover this tool is user friendly to the naive as
well as the sophisticated user. We stress once more that these results can more or less be
easily obtained if the 1S fundamental operations displayed in §4 are made available on
the computer. The availability of interval operations is essential for obtaining these
results.

We now illustrate the three mapping principles of (a) inclusion, (b) contraction
and (c) retraction, resp. which are relevant for our treatment. See Fig. 13a, b, c, resp.

a) lnc/mion b) Contraction

Fio.13.

c) R~traclion

5.2. Continuom mappinp. Let /: Rn-+ Rn be a continuous mapping. Let A be a
nonempty, convex, closed and bounded subset of Rn. Let /(A)=B.

(a) Inclusion: B~A establishes existence of a faed point (Brouwer fixed point
theorem).

(b) Contraction: Let /(a)=a
1

, /(b)=b
1

. If, for all a, beA, the distance d(a
1

,b
1

)

~ kd(a, b) with k < 1, then uniqueness is established. To see this, suppose x and y are
fixed points. Then d(x,y)~kd(x,y). Then (1-k)d(x,y)~0 so that d(x,y)==O. This
implies that x-y.

(c) Retraction: Fig. 13c displays the case where B is a retraction of A, that is,
where B lies inside of A and away from the boundary of A. Retraction implies
uniqueness of the fixed point in the case of a linear mapping. To see this, suppose there
are two fixed points x and y of the linear mapping /. Then for any scalar A,
/(x+Ay)-/(x)+A/(y)-x+Ay. Then x+Ay is a fixed point also. Now A can be
chosen such that x+Ay is on the boundary of A. This contradicts the retraction
property.

If A and Bare intervals, A-[a
1
,a

2
] and B•[b

1
,b

2
] of any dimension, then (a)

and (c) are easily testable. Indeed:

(a) • a1:iib1 Ab2:;;a2 ,

(c) • a1 <b1 Ab2 <a2 •

~
!
~

i'

Contraction (b)
rare case of cert

For the spt
and verification
of linear equatic

(1)

Let the exact so:
be the error an
optimal scalar p
maximal) accura

(2)

and therefore,

(3)

If we now comp,
the solution of (l

Now we con

(4)

with any matrix ,
(2) tells us that (·
point of (4) if an,
value of a matrix ,
a retraction of En

(5)

where aEn denote!
Y. Retraction is ea
that R and A are
the interval i + En

In practice R
usually holds in pr
adding a very smaJ
retraction (5) occu:
to produce (5), and
the optimal scalar
The whole process
and simultaneousl}
computed bounds.

(2) and (4) are
advanced computer
is used: If i in (2) i
subtraction b-Ax ,
d can be computed .
from (3) is worthies!

iescnl>c it here, in
ar spaces of co~pu
limited accuracy are
DOWD may be speci
e verified to contain
afied intervals. The
low them to be, but
~lied.
ve statements as the
~thin the computed
mion for scientific
ulating tool, but a
ndly to the naive as
. can more or leu be
e made available on
for obtaining these

ion, (b) contraction
g. 13a, b, c, resp.

dlpping. Let A be a

lt'ouwer fixed point

~ distance d(a1,b1)

.ippose x and y are
iat d(x,y)=O. This

:lion of A, that is,
Retraction ~lies

: this, suppose there
for any scalar A,

lso. Now A can be
Jicts the retraction

:lirnension, then (a)

AlUTIIMETIC OF THE DIGITAL COMPUTER 31

Contraction (b) is a property of the mapping which must be known to the user. In the
rare case of certain special mappings, the computer itself can verify the contraction.

For the specialist, we give a more formal but still brief description of the iteration
and verification proceu described above. We choose the simple case of solving a system
of linear equations of the form

(1)

Let the exact solution be denoted by .i and an approximate solution by i. Let e-= i - .i
be the error and denote the defect of the approximation by d := b-A.i. With the
optimal scalar product in the adding mode, d can be computed with full (or at least to
muirnal) accuracy. Then •

(2)

and therefore,

(3)

b-A.i=O,

Ae=d.

If we now compute an interval inclusion E for the error e, we obtain an inclusion for
the solution of (1):

e-=i-.iEE•iE.i+E.

Now we consider the interval iteration scheme

(4) En+l :-= (/-RA)En+Rd

with any matrix R. Here I denotes the identity matrix. A theorem of interval analysis
(2) tells us that (4) converges for every initial interval vector £0 to the unique fixed
point of (4) if and only if the spectral radius p(II-RAD< 1. Here we use the absolute
value of a matrix to denote the matrix of the absolute values of its components. En+ 1 is
a retraction of E,. if

(5)

where a£" denotes the boundary of E,., dist(X, Y) denotes the distance between X and
Y. Retraction is easy to guarantee computationally. If (5) holds, another theorem states
that R and A are not singular and E,.+ 1 contains the solution of (3): eeEn+i· Thus,
the interval .i + E,.+ 1 contains the unique solution of (1).

In practice R is chosen as an approximate inverse of A. Then p(11 - RAD< 1
usually holds in practice. Now the swting value E0 for the iteration (4) is obtained by
adding a very smaJJ interval to the approximation .i of .i. In most cases in practice the
retraction (5) occurs after one iteration. Only rarely have more iterations been needed
to produce (5), and then only two or three. (4) is very sensitive to roundinp. Therefore,
the optimal scalar product in the adding mode is used during the computation of (4).
1be whole process delivers a bigb]y accurate set of computed bounds for the solution
and simultaneously proves the existence and uniqueneu of the solution within these
computed bounds.

(2) and (4) are suited to reveal the differences between the use of elementary and
advanced computer arithmetic. Let us first assume that elementary computer arithmetic
is used: H x in (2) is already a good approximation of .i, then Ai is close to b and the
subtraction b-A.i causes cancellation. 1bat is, only a few digits or possibly no digit of
d can be computed correctly. For an imprecisely known d, determination of the error e
from (3) is worthless.

32 U. W. ICULISCH AND W. L. MlllANKEll

Similarly, if in (4) R is a good approximation of ...4-1, then RA is close to/ and
the subtraction I - RA causes cancellation. In such a case the iteration matrix in (4) is
known only approximately so that the computed result of the iteration (4) is worthless.

On the other hand, by using advanced computer arithmetic with optimal scalar
products, the difference b-A.i in (2) and the iteration matrix J - RA in (4) can be
computed to full accuracy. 1bis makes the defect comction process work very well.

In (17) it is shown that validation is provided for a linear system in at most 6 times
the work for solving the linear system itself by Gaussian elimination. This theoretical
bound has proved to be pessimistic in practice, since, as we have already noted, rarely
is more than one iteration required to produce the validation. Sparse matrices may be
accommodated by these methods without increasing storage requirements. With effec
tive implementation the speed of these methods has been made comparable to any
alternate method and this includes the validation which is not typically provided by
alternate methods.

Linear systems of equations play a central role for the whole of numerical analysis.
Many problems can be reduced to linear systems. Even nonlinear systems of equations
are solved approximately through the use of linear systems.

Accurate function evaluation is indispensible for many algorithms. Then as the last
step of our treatment of "high order" arithmetic operations, we show how polynomials
and then arbitruy arithmetic expressions can be evaluated with high accuracy (the
validation step included) (4). We proceed by reducing these questions to solving either
linear systems of equations or to solving nonlinear systems of equations of special form.

S.J. Expression evaluation. As a model situation, consider the following poly
nomial of degree three.

p(t) =a3t
3 + a2t 2+a1t+a0 = ((a3t+ o2)t +a1)t+ a0 ,

where o0 , o1, o2, a 3 and t are given floating-point numbers. The expression on the
right-hand side is called the Homer scheme. Evaluation of p(t) by means of the
Homer scheme proceeds in the following steps:

X1 s=a3 X1 =a3

X2=x1t+02 -tx1 +x2 =a2

X3=X2t+o1 or -IX2+X3 =a1

x4=x3t+o0 tx3+x4 =ao.

This is a system of linear equations Ax= b with a lower triangular matrix, where

A-1-1 _; i i), .x-= 1~:1 and b= 1=:).
0 0 -t 1 x, o0

x4 is the value of the polynomial. Then a highly accurate solution of the linear system
delivers the value of the polynomial with high accuracy. The extension to higher order
polynomials is obvious. 1bis procedure generates highly accurate evaluation of poly
nomials, even of very high order.

Let us now consider general arithmetic expressions and begin with the example

(o+b)c-!!..
e

Here o,b,c,d ai

performed in tht

Once again we o
There are a

For example, th,

leads to the nonJ

All such systems
they can be trar
process (4). Sob
correction methc
with high accura
dyadic operation
sions is fundamc
putations involvi
With optimal sa
information in t1
one single round:

6. Connectit
program was a
machinery. The l
that he expects t
computation in a
This basic comp,
of primitive ord
memory and pla
contents of anot
been a refined ar

Ascompute1
in assembly langi
communicate du
computation to 1:
language and the
translation betwe

A is close to I and
ion matrix in (4) is
JD (4) is worthless.
vith optimal scalar
- JU in (4) can be
work very well.
, in at most 6 times
m. This theoretical
ready noted, rarely
se matrices may be
nents. With effec
~mparable to any
,ically provided by

numerical analysis.
,steins of equations

ns. Then as the last
w how polynomials
high accuracy (the
ns to solving either
>ns of special form.

he following poly-

: expression on the
, by means of the

.atrix, where

,f the linear system
ion to higher order
:valuation of poly-

ith the example

AlUTHMETIC OF THE DIGITAL COMPUTEll 33

Here a, b, c, d and e are floating-point numbers. Evaluation of this expression can be
perf ~rmed in the following steps.

X1 -=a,

X2 -=x1 +b,
X3 -cx2,
x .. -d,

exs -x .. ,
%6 -x3-X5.

Once again we obtain a linear system of equations with a lower triangular matrix.
There are arithmetic expressions which lead to a nonlinear system of equations.

For example, the expression

(a+b)(c+d)

leads to the nonlinear system of equations

x1=a,
X2=X1 +b,
X3=C,

x4 =x3 +d,
X5=X2X4.

All such systems are of a special lower triangular form. They can be solved directly, or
they can be transferred into linear systems by an automatic algebraic transformation
process (4). Solution techniques which employ optimal scalar products and defect
correction methods can then be used. In this way the value of an arithmetic expression
with high accuracy is obtained. The extension of computation with high accuracy from
dyadic operations (even in the product spaces of Fig. 6) to arbitrary arithmetic expres
sions is fundamental. Even though the operations are implemented optimally, in com
putations involving several such operations errors may accumulate and become large.
With optimal scalar products and defect correction methods, we can reduce the loss of
information in the evaluation of polyadic operations of arithmetic expressions to only
one single rounding.

6. Connection with programming languages. We had earlier noted that the stored
program was a major intellectual breakthrough in the development of computing
machinery. The program is the means by which the computer user lays out the work
that he expects the computer to perform. In a sense he writes the requirements of his
computation in a basic language which the computer can process, interpret and execute.
This basic computer language is usually called assembly language, and it is composed
of primitive orders to the computer. Examples of these are fetch a number from
memory and place it in an accumulator or add the contents of one register to the
contenis of another one. Programming a computer in assembly language has always
been a refmed art usually reserved to the expert computer user.

As computers increased in size, speed and availability, the burden of programming
in assembly language became excessive for many computer users. There was a need to
communicate directions to the computer in simpler languages which described the
computation to be performed in more natural terms. The computer user could use one
language and the computer another language. The computer itself must execute the
translation between these languages, and it does so by means of a translation program

34 U. W. KUUSCH AND W. L. MDlANXEll

called a compiler. This concept and its effective implementation was another intellect
ual breakthrough in the development of computers. The language used by the computer
user is called a higher level language, an application oriented language or a source
programming language. Although there were simultaneous developments of this source
language-compilation-assembly language idea, the first widely successful such de
velopment was the source language called FORTRAN and its associated compiler in
the fifties. Since that period many other source languages have been developed such as
ALGOL~, COBOL, PASCAL, APL and ADA. The development of such program
ming systems has become as important as the development of computing machinery
itself.

Programming lanpages have evolved greatly in the last thirty years providing ever
increasing amounts of capability and congeniality to the programmer. From the point
of view of scientific computation these languages have always been concerned with the
expression of mathematical algorithms and the communication to the computer of the
procedure for executing these algorithms. The original FORTRAN allowed the user to
write mathematical formulas comprised of variables and the basic arithmetic opera
tions, + , - , x, /. In spite of the overwhelming advances made in the development of
programming languages in the last thirty years, the capability of languages in the
marketplace with respect to mathematical formulas has remained more or 1~ the same.
(There are of course notable exceptions such as APL and ALGOL-68 and ADA which
provide facility for use of higher data types and corresponding operators.)

During the same thirty year period, the theory and practice of computer arithmetic
has also had a significant development. The development of computer arithmetic as
desctj.bed in this article is composed of several levels of capability. These are the
conventional capability, termed elementary computer arithmetic and three new capabil
ity levels termed basic, advanced and higher computer arithmetic. The computer pro
grammer who executes algorithms exploiting the full range of this computer arithmetic
must be able to conveniently write programs in terms of the operators and data types of
these three new levels. Thus, we have seen the extension of certain scientifically
oriented programming source languages, e.g., ALGOL (3), FORTRAN (5), (6), (7),
PASCAL (8), to accommodate these capabilities. In this section we describe the way in
which a source language is developed in order to properly interact with the three new
levels of computer arithmetic, which we have discussed. We begin with the basic
computer arithmetic framework.

6. t. Basic computer aridllDetic. For this level of the source language we start with
the type real (floating-point numbers). We extend the language from its customary
setting of the four operations m, B, l!J,IZI to the 15 fundamental operations

1B B l!J IZI EJ

While the three dot products liJ , 'i', and A operate on vectors, we avoid introducing a
vector type at this level of the language. Instead, a new type called dot precision along
with the associated procedure dotadd is introduced in terms of which the dot product

operators 8 , vii

serve as primitiv~
Fig.6.

Apart from t1
further operatiom
precision. Let R =
variable of the tyJ
digits of base b. St
a;X b; can be repr•
can be computed i

A call for dot

This makes the ~

where A is a varia·
of the variables b
complete accur~
now easily implen
dotadd as follows.

The last statement
variable x of type
the value of the i
exact inner prodw

the scalar product:
For example,

of expressions of t

with vectors a, b, c

21n the remaindeJ
particular, multiplicat

'BS another intellect
sed by the computer
:nguage or a source
ments of this source
successful such de

iOCiated compiler in
n developed such as
1t of such program
,mputing machinery

years providing ever
ner. From the point
concerned with the

the computer of the
allowed the user to

ic arithmetic opera-
the development of

>f languages in the
ore or less the same.
-68 and ADA which
ators.)
:omputer arithmetic
iputer arithmetic as
ility. These are the
d three new capabil-
The computer pro

:omputer arithmetic
,rs and data types of
=tain scientifically
TRAN [5], [6], [7],
describe the way in
with the three new
~ with the basic

iguage we start with
from its customary
:rations

avoid introducing a
dot precision along

.ich the dot product

AIUTBMETIC OF 11IE DIGITAL COMPUTEll

operators m , ~ and A may be composed. The following collection of constructs

dot precision,
:- (a.wgnment from real to dot precision),
dotadd,
a,V,6,

35

serve as primitives for developing the operations in the product spaces of the table of
Fig. 6.

Apart from the assignment, the procedure dotadd and the roundings a, V, 6, no
further operations, functions or procedures are required for this (auxiliary) type dot

·precision.Let R-R(b,l,~1,el) be the floating-point system of the computer in use. A
variable of the type dot precision is a fixed-point variable with d = t + le 2 + 2/+ 2 !el I
digits of base b. See Fig. 10. For n ~ b', every sum E7.1a; x b; of floating-point products
a I x b; can be represented as a variable of type dot precision. Moreover, every such sum
can be computed in a local store of length d without loss of information (see Fig. 11).

A call for dotadd is given by

dotadd(A, b, c).

Tbis makes the assignment2

A:= A+bxc,

where A is a variable of type dot precision and where b x c is the double length product
of the variables b and c of type real. The addition indicated here is to be executed with
complete accuracy. The exact inner product of two vectors b=(b[i]) and c=(c[i]) is
now easily implemented with a variable a of the type dot precision and the procedure
dotadd as follows.

a:= O;
for i := 1 ton do dotadd (a,b[i],c[i]);
x:= a;

The last statement x := a rounds the value of the variable of type dot precision into the
variable x of type R by applying the standard rounding D of the computer. x then has
the value of the inner product b l!J c which is within a single rounding error of the
exact inner product b·c. By changing the last statement (x := a) in this program to

x :c: realdown (a),

resp. x :- realup (a),

the scalar products b'if/c resp. b&c of the vectors b= (b[i]) and c= (c[i]) are produced.
For example, the method of defect correction requires highly accurate computation

of expressions of the form

with vectors a,b,c,d. Employing a variable x of type dot precision, this expression can

2 In the remainder of this chapter we shall use a PASCAL-like representation of arithmetic operations. In
particular, multiplication will be denoted by •. Exponentiation is denoted by the FORTRAN symbol••.

36 U. W. KULISCH AND W. L. MIRANKEll

now be programmed as follows.

.x :=- O;
for i :- 1 ton do dotadd (x,a[i),b[i]);
for;:- 1 ton do dotadd {.x,c[i),d[i]);
y :::a:: .x;

This calculation is an example of our guiding principle. A result involving 2n multi
plications and 2n -1 additions is produced with but a single rounding operation.

6.2. Advanced eomputer arithmetic. Here the source language provides constructs
to utilize the advanc;ed computer arithmetic. We make use of a type concept and an
operator concept as well as the overloading of (certain) function names. The type
concept makes for easy use of the data types, VR, MR, JR, IVR, IMR, C, VC, MC,
IC, IVC and IMC shown in Fig. 6. These many data types are implemented in terms
of the four basic types: real, complex; (real) interval and complex interval and the two
structurings: vector and matrix.

The operator concept makes for easy use of the many optimally accurate arith
metic operations associated with all these types. The operator concept required for
these arithmetic purposes is limited, in principle, to an overloading feature. Types and
operators for the sets mentioned above should be made available by the language in
pre-defmed and pre-compiled form. Thus

(a•x+b)•x+c

may be an expression for real or for complex matrices if the data and variables are
correspondingly defined. Its value may be assigned to another variable of the resulting
type by a single assignment:

y := (a • x + b) • .x + c.

A side effect of such a short notation is that it obviously reveals its parallelism.
Computation and assignment for all components of such a statement may be executed
in parallel.

Traditional programming languages include standard functions such as sqrt, In, sin
and exp for the basic data type real Such standard functions are now provided for each
of the basic types real, complex, (real) interval and complex interval. As with all
operations, this standard function capability is provided with mnima] accuracy. One
name is used for each standard function regardless of its argument type, that is,
standard function names are overloaded.

6.3. Higber eomputer arithmetic. This level of source language deals with the
capability of developing optimally accurate results for a class of numerical algorithms
as described in §S. Computational techniques such as mnirnaJly accurate scalar prod
ucts and defect correction methods were .-cl to furnish this capability. Referring to
that section, we select as an atom for this level of the source language, the capability to
evaluate to maximum accuracy expressions composed of the data types and operations
comprising the previous levels. In programming languages such expressions are often
developed as program parts. Then this level of the source language extension is con
cemed with the specification that a program part shall be executed, equivalently, the
corresponding expression be evaluated, with niuirnaJ accuracy.

We give a few examples of how such expression evaluations are encoded:
1. 1bis example employs a new programming construct. Namely, a prefix eualt is

affixed to an ex1
the statement

delivers the valt
rounded value ot

Z:= roun~
z :::1 rounds
z :== <resp.

2. AnotherE

where the A;t B;.

encoding is

which delivers th
3. The new

pies demonstrate
performed simpl~

The last compute

with high accurac
In many cast

means of a com
already so encode
that they are big
program.

For example
Let x,y,z be nan
are to be upgrade
way

This modified pre
y upwardly, z to 1

involving 2n multi
ng operation.

provides constructs
iJ>C concept and an
n names. The type
IMR, C, YC, MC,
iplemented in terms
nterval and the two

aally accurate arith
lncept required for
; feature. Types and
by the language in

a and variables are
able of the resulting

reals its parallelism.
:nt may be executed

. such as sqrt, In, sin
w provided for each
1terval. As with all
imal accuracy. One
ment type, that is,

age deals with the
umerical algorithms
ccurate scalar prod
ibility. Referring to
.ge, the capability to
ypes and operations
q,ressions arc often
Je extension is con
xi, equivalently, the

:encoded:
ely, a prefix eval, is

AlU11IMETIC OF 11IE DIGITAL COMPUTER 37

affixed to an expression. Thus, if a, c, e and / are vectors and B and D matrices, then
the statement

/:- eval(a+B • c+D • e)

delivers the value of a+ B • c + D • e to full accuracy. The assignment delivers the
rounded value of the type of/. Possible assignments are as follows.

Z :-= rounds to an interval if Z is of type interval.
z :- rounds to the nearest if z is of type R.
z :- < resp. z :a: > rounds monotone downwardly resp. upwardly if z is of type R.

2. Another example is the computation of sums like

where the A;, B;, i= l(l)n, are vectors or matrices. The corresponding source language
encoding is

Z := eval (sum(A [i J • B [;), i = 1 .. n))

which delivers the value of Z, with the type of Z.
3. The new source language capability is substantive. Indeed the following exam

ples demonstrate the encoding of expression evaluations which could not have been
performed simply by applying optimal scalar products.

a :==>eval(.x+4•(3.0e7• y/z)),
b :-<eval(((4• .x-5) • .x+ 3) • .x+ 25e3),

c == eval(sum(a[i) • .x • • i,i= 1 .. n)).

The last computes the value of the polynomial

with high accuracy.
In many cases it is more user-friendly to express the computation of expressions by

means of a conventional program part. For example, suppose the expressions are
already so encoded. The user desiring to upgrade results from such a piece of code so
that they are highly accurate is not obliged to re-program. He may just upgrade his
program.

For example, let PROO stand for the statement sequence of such a program part.
Let .x,y,z be names of those variables whose values are computed within PROO which
are to be upgraded to outputs with high accuracy. This is accomplished in the following
way

accurate X < ,y > , Z do
PROO

end
This modified program computes x,y,z with high accuracy and rounds .x downwardly,
y upwardly, z to the nearest.

38 U. W. KULISCB AND W. L. MIRANKER.

Needless to say, accurate evaluation of expressions or program parts is slower than
execution with simple floating-point. However, accurate evaluation obviates the need
for an error analysis. It also may be critical in unstable cases.

7. Final remarks. Here we comment on certain misconceptions about automatic
computation and about certain deficiencies in practice which arc not addressed by our
approach. Then the current state of existing implementation of our approach is surveyed.

In colloquial use the terms precision and accuracy arc synonymous. With respect
to computers, precision and accuracy represent quite different concepts. It is surprising
how much confusion this causes even among people who should know better. Precision
refers to the quality of the tool whereas accuracy refers to the results produced by that
tool. A computer may. use great precision, i.e., its Ooating-point mantissa length / and
its exponent range e2-lell may both be quite large, but the same computer may be
condemned to produce results of mediocre accuracy. The confusion between these two
terms is very clearly revealed by computer manufacturers and those computer users
who believe that more precision is an automatic ticket to higher accuracy in the result.
Such a manufacturer offers a basic precision, a higher precision and perhaps even an
extended precision. Such a user dissatisfied with the accuracy of the results obtained in
single precision simply recomputes in a higher precision. We have already demon
strated by means of simple examples that this does not necessarily produce higher
accuracy in the resulL A mediocre crew of carpenters supplied with electron micro
scopes to mark their cuts will still produce a rickety house. We stress that the distinc
tion between the concepts of precision and accuracy has always been maintained in this
article. •

When people talk numbers they talk decimal, even when conversing with their
computer. Most computers then slyly talk another language to themselves (binary,
octal, hexadecimal or whatever). This interface process is not an exact process. It is
subject to rounding errors with an associated loss of information. This places a burden
on the user which is frequently not just a minor annoyance. Certainly financial calcula
tions, among others, are affected by this interface problem.

The use of nondecimal number systems in the computer is a historical develop
ment stemming from ·considerations ultimately based on cost and performance. Mod
em technology eliminates this need to deal with nondecimal number systems. The user
should not be burdened by the interface conversion problem. If computers also talk
decimal to themselves, they will be more user-friendly.

Most computer users have experienced changing computers. With varying degrees
of trauma, they have learned to deal with the idiosynchrocies of the new system.
Standardization of computer systems is certainly an ideal which is a long way off.
However, standardization of the computer arithmetic is at hand. The theory and
practice of computer arithmetic as discussed in this article provide an excellent vehicle
for this standardization. The methodology is well founded in fundamental mathemati
cal principles, and the implementation techniques are efficient and practical as well.
The results are of maxirnaJ accuracy, and the procedures are user-friendly.

It is of interest to survey the implementations of the methodology discussed in this
article which arc already in existence: Basic arithmetic is available in a software
implementation in all mM System 370 computers. Based on this, many parts of
advanced and of higher order computer arithmetic routines arc available in the form of
subroutines and program packages. A commercially available such package is called
ACRITH (13), (14). One particular IBM mainframe, the 4361, offers all basic arithmetic
capabilities in hardware supported microcode.

I
Basic, adva

environment, ar
A hardwar,

slice technolog)
mainframes.

Basic and i

and FORTRA1'
basic, advanced

Recall that
arithmetic of tht
12 operations a
recommend that
that all 15 of th,
double length pr
basis for ef ficien

(l] ·G. ALEFELD A:
graphischc

(2) __ , lntrOQ
(3) N. APoSTOLAT

175-180.
(4) H. BOHM. Eva/
[SJ G. BoHUNDEJI.

277-313.
(6) __ , Propo

Univ. Karl
(7) --• App/;,

matics, Un
[BJ __ , MatriJ
[9) G. BoHLENDEll

(20], pp. 26
(10) J. COONAN, et a
(11] J. J. DoNGAIUU

for Indus tr:
(12) G. E. FORSYTHJ

ment. Stan!
(13] High-Accuracy,

5664-185,]
[14) High Accuracy,

Number56
[15) INTEL 121S86·
[16) E. W. KAUCHER

talion with <
(17) E. ICAUCHEll Alli

operator-eq,.
(18] U. KUI.ISCH, G,

[19)
Bibliograph

U. W. KUI.ISCH

New York.:
(20) _,ANt!W.
[21) U. Kuusce ANi

GcrmanCb.
(22) M.AMAl.coLU

parts is slower than
, obviates the need

IS about automatic
•t addressed by our
,proacb is surveyed.
nous. With respect
ots. It is surprising
YW better. Precision
s produced by that
ntissa length / and
• computer may be
between these two

:,se computer users
·uracy in the result.
ad perhaps even an
results obtained in
ve already demon
ily produce higher
ith electron micro
:ss that the distinc
t maintained in this

oversing with their
.hemselves (binary,
exact process. It is
bis places a burden
iY financial calcula-

historical develop
~ormance. Mod-
r systems. The user
omputers also talk

ith varying degrees
•f the new system.
is a long way off.
1. The theory and
m excellent vehicle
.mental mathemati
~ practical as well.
~dly.
gy discussed in this
1ble in a software
lis, many parts of
lable in the form of
1 package is called
all basic arithmetic

AlU1llMETIC Of THE DIGITAL COMPUI'Ell 39

Basic, advanced and higher order arithmetic routines, embedded in a PASCAL-SC
environment, are available in two micros, the ZILOG Z-80 and the MOTOROLA-68000.

A hardware unit which performs all basic arithmetic routines has been built in bit
slice technology. It may be used as an arithmetic unit in connection with micros or
mainframes.

Basic and advanced computer arithmetic bas been embedded into FORTRAN (SJ
and FORTRAN BX (6), (7). The program.ming language Matrix-PASCAL (8) supports
basic, advanced and higher arithmetic.

Recall that basic arithmetic comprises the 15 operations enumerated in §4. The
arithmetic of the so-called IEEE standard provides for 12 of these 15 operations. These
12 operations are available on the INTEL 8087 chip, among others (10), [15]. We
recommend that future versions of such chips implement the optimal scalar product so
that all 15 of the operations of basic arithmetic are available. At the very least the full
double length product should be available for all precisions; this capability providing a
basis for efficient simulation of optimal scalar products.

REFERENCES

(1) G. Al.EFELD AND J. HERzanGER., Einfuhrvng in die Jn1ervallrechn1111g, Reihe lnformatik, 12, Biblio
grapbiscbes lnstitut Mannheim, 1974.

(2) --• Introduction to lntnval Computations, Academic Press. New York, 1983.
(3) N. APosToLATOS ct al., TM algorithmic language Triple.x•ALGOL-60, Numcr. Math., 11 (1968), pp.

175-180.
(4) H. BOHM, Evaluation of arithnwticexprasions with maximum accuracy, in [20), pp. 121-137.
(5) G. BoJU.ENDEll, ct al., FORTRAN for contemporary nummc"1 computation, Computing, 26 (1981), pp .

277-313.
(6) __ , Proposal for arithmetic s~dfication in FOR.TRAN 8X, Institute for Applied Mathematics.

Univ. Karlsruhe, 1982.
(7) __ , Application module: sdffltiftc-computation for FORTRAN 8X, Institute for Applied Mathe

matics, Univ. Karlsruhe, 1983.
(8) __ , Matrix PASCAL, in (20), pp. 311-384.
(9) G. BoHLENDER AND U. KUUSCH, Fmt11res of a hardware implementation of an optimJJI arithmetic, in

(20), pp. 269-290.
(10) J. COONAN, ct al., A proposed standard for floating•point arithmetic, SIGNUM Newsletter, 1979.
(11} J. J. DoNGAIUtA, J. IL BUNCH, C. B. MOLEll AND 0. W. STEWAn, UNPACK Users' Guide, Societ~·

for Industrial and Applied Mathematics, Philadelphia. 1979.
(12} G. E. FORSYTHE, Pitfalls in computation, or why a math book isn't fflough, Computer Science Depart

ment, Stanford Univ., Stanford, CA. 1970.
(13) High-,fct:uracy Arithmdic, Subroutiu Ubrory, Genera) Information Manual, IBM Program Number

5664-185, 1984.
[14) High At'CIO'acy Arithmdic, Subroutiu Ubrary, Program Description and User's Guide, IBM Program

Number 5664-185, 1984.
(15) INTEL 121586-001, TM 8086 family 111rr's IIIQlfllQ/, Numeric Supplement. 1980 .
(16) E.W. KAUCHEllAND W. L MDANKB. Self Validating Nummcs/or Function Spaa Problems, Compu

ta1ion with Guaranttt1 for Dif/rrffltial and Jn,egral Equations, Academic Press, New York, 1984.
(17) E. KAUCIIEll AND S. M. RUMP, Gfflmllized itrratiOII methods for bounds of the solution of fixed point

,prator~ons. Computing. 24 (1980), pp.131-137.
(18) U. KUUSCB, Grvndlagffl des Numnudtffl R«Nm•MatMmatiJche Beg,vnding tkr Redlurarithmetik.

Bibliograpbiscbcs lmtitut, M•nnbeim, 1976.
(19) U. W. KtJWCH AND W. L Mla.uma, Computrr Aritlunetic in Thory and Practice, Academic Press.

New York. 1981.
(20) __ , A Nffi Approach 10 Sciffltif,c Comp,llalion, Academic Press, New York, 1983.
(21) U. KUUSCB AND Ce. UU&JCH, W-wfflldulftltdles R«lutffl und Programmierspradrffl, Berichte des

German Chapter of the ACM 10, Teubner Verlag. 1982.
[22) M. A M.\LcoLM, On Offllrllle Jloating-poinl JIDMlalion, Comm. ACM. 14 (1971) pp. 731-736.

40 U. W. ltULISCH AND W. L. MIRANltE1l

[23) R. E. MOOllE, lntmx,J Analysis, Prentice-Hall, Englewood Ciffs, NJ, 1966.
[24) __ , Method, tl1ld AppliCJZlio111 of lntm,a/ Analy1is, SIAM Studies in Applied Mathematics 2,

Society for Industrial and Applied Mathematics, Pbiladelphia.1979.
[25) S. M. Rma, How millble ~ rmdu of comp,11m, Jabrbucb Oberblicke Mathematik, 1983, Biblio-

grapbischcs lnstitut, Mannheim, 1983, pp. 163-168.
[26) __ , Solaing algn,aic prob/au widt laiglt acanq, in (20), pp. 51-120.
(27) J. H. Wu.aNSON, 71w Alpbraic Eip,u,alu,t Probkm, Oxford Univ. Press. Cambridge, 1965.
[28) __ , ROllllding Errors in Algn,aic Proca,a, Prentice-Hall, F.nglcwood Cliffs, NJ, 1963.
[29) J. M. YOIIE, ROlllldinp in /looting-poi,u aritlundic, IEEE Tnm. CompuL C-12 (1973), pp. 577-S86.

SUPPLEMENTARY BIBLIOGRAPHY

[St] J. G. P. B,wm.. An tll1ffllil!W of Ada, Software Praclia: BIid Experience 10, 11 (19SO), pp. 851-887.
(52) A K. CUNE. C. B. Moua. G. W. SnwAt.T AND J. H. Wll&JNSON, An alimale for tire condition

~, of a ffllllri%, SIAM J. Numcr. Anal, 16 (1979), pp. 368-375.
[S3) W. CODY AND W. Wem., Softwan Mam,a/ for die E/nta,tary Fllndion.,, Prentice-Hall. Englewood

Ciffs. NJ. 1980.
[S4] J. D. DlxoN, Estimaling eztmnal ngenvalua and condition., nunrbn:s of matrica. SIAM J. Numer.

Anal, 20 (1983), pp. 812-814.
[SS] M. D. EaaooVAC, A Bffi4tal hardwan-orienttd nwthod for eualuation of function., and computations in

a digital computer, IEEE Trans. CompuL, C-26 (1977), pp. 667-680.
(56) W.W. HAoa. Condition atimata, SIAM J. Sci Stal Comp .• S (1984), pp. 311-316.
[S7] D. Kucx. ne Str11a1n of Computm and Computations, John Wiley, New York, 1978.
[S8] MACSYMA Referma Manval, Mathlab Group, Laboratory for Computer Science. Massachuseus

Institute of Technology, Cambridge, 1983.
(S9] D. P. O'LEAaY, Estimating matrix condition numbm, SIAM J. Sci. Stal Comp., 1 (1980), pp. 205-209.

[S10) F. N. Rls. lntertJal OM!pis and applications to llntar algtbra. Dissenation, Oxford Univ .• 1972.
[Sl 1 J E. Sw AllTZLANDB, Computer aridrtMtic, Benchmark Papers in Engineering and Computer Science 21,

E. Swartzlander, ed., Hutc:binson Ross, 1979.
[S12) E. WEGBllEIT, 71w tnalmlnl of data typo in ELI. Comm. ACM, 17 (1974), pp. 251-264.

SIAM REvlEW
Vol. 28, No. 1. March I

Abstnct.lbe1
of ordinary differe1
theory and theory <

Key words. Ore
tori

AMS(MOS)sa

t. lntroduc
lions, lemmas a
In general the c
part of the rese
examples which

In the theo1
as a natural cor
analyze, since u
nature of the the
terms on the flot

In §2 a bri
sections that foll,
each section it is
hope that by th,
himself. I have sc
theory and the tl
that there is somt

I would like

2. Backgrou;
tion analysis and
ter. In many case
an aid in the anal

(1)

where Z • has a sc

(2)

When e=O, (1) rec

(3)

•Received by the t
tDepanment of~

was supported by a Ni

