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Abstract. A new spproach to the arithmetic of the digital computer is surveyed. The methodology for
defining and implementing floating-point arithmetic is described. Shortcomings of elementary floating-point
arithmetic are revealed through sample problems. The development of automatic computation with emphasis
on the user control of errors is reviewed. The limitations of conventional rule-of-thumb procedures for error
. control in scientific computation are demonstrated by means of examples. Computer arithmetic is extended
so that the arithmetic operations in the linear spaces and their interval correspondents which are most
commonly used in computation can be performed with maximum accuracy on digital computers. A new
fundamental computer operation, the scalar product, is introduced to develop this advanced computer
arithmetic.

A process of automatic error control called validation which delivers high accuracy with guarantees for
scientific computations is described. Validation of computations for a large class of numerical problems is
made possible by advanced computer arithmetic. High accuracy is furnished by coupling the scalar product
with the process of-defect correction. Guarantees and error bounds are obtained by interval techniques. This
whole process establishes certain numerical algorithms such as the evaluation of rational expressions as
additional higher order arithmetic operations. The development of some programming languages in the
context of computer arithmetic is reviewed. A collection of constructs in terms of which a source language
may accommodate the methodology of computer arithmetic in a user-friendly mode is described. Finally the
current state of implementation of the ideas discussed here is reviewed.
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1. Introduction. Historically, computers were developed for scientific computa-
tion. Today, the digital computer is a general purpose machine. It is used in such
diverse areas as game playing, banking, reservation systems, traffic control, language
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translation and inventory control. Because of this proliferation of computer usage, it is
easy to overlook the central relationship between the computer and scientific computa-
tion.

There are two principal number systems used in a modern digital computer. These
are integer systems (fixed-point systems) and floating-point systems. These number
systems require different concepts of computer arithmetic, The integer system is to a
large extent the system used in the area of nonscientific computation of the types
enumerated above. As long as the values of computed results do not exceed the range
of representable integers (i.c., as long as no overflow and no noninteger result occurs),
these computations are error-free. For this reason, the public image of the computer is
one of a perfect computational tool.

Problems of scientific computation occur everywhere in the natural sciences and in
technology. Examples of such problems are solving a differential equation or a system
of algebraic equations. The floating-point system along with the operations of floating-
point arithmetic are used as an approximate means for calculating solutions of such
problems. Floating-point arithmetic confronts us with a seemingly paradoxical situa-
tion. On one hand, many modern computers perform the basic floating-point opera-
tions with high, even maximum accuracy. Nevertheless, the results of a scientific
computation composed of several of these operations may be grossly incorrect. As an
example of this consider the determination of the following sum.

1050+ 812—-10%+10%5 + 511 - 10%=1323.

By summing these numbers from left to right, most digital computers will return 0
(zero) as the answer. This error comes about because the floating-point formats in these
computers are unable to cope with the large digit range required for this calculation.
The obvious solution for this particular example is to exchange the operands in an
appropriate way. Such problem fixes are not always known. Even when they are
known, they cannot always be applied for practical reasons. We shall give several
additional examples of the failure of computers to deliver correct results later on.

This article deals with floating-point arithmetic from a contemporary point of
view. We shall show that recently developed concepts and methods of floating-point
arithmetic provide a superior capability for modern digital computers with far-reaching
consequences for scientific computation. For example, they go a long way toward
eliminating errors of the type just described. There are other nonfloating-point arith-
metic implementations for eliminating error in scientific computation. Examples of
these are rational arithmetic, the use of multiple precisions and the full precision
arithmetic found in such systems as SCRATCHPAD and MACSYMA. We stress that
our methodology is to enhance the practical high performance quality of floating-point
with the safety which is provided with these other methods.

We begin this development in §2 with a description of floating-point numbers and
elementary floating-point arithmetic. The methodology for defining and implementing
floating-point arithmetic is informally described. Shortcomings of elementary floating-
point arithmetic are revealed through sample problems. .

In §3 we give a brief review of the development of automatic computation with
emphasis on the user control of errors. Rule-of-thumb procedures for error control
employed in scientific computation are discussed. Limitations of these procedures are
demonstrated by means of examples. This motivates the necessity for the further
development of computer arithmetic which follows.

In §4 we extend computer arithmetic so that the arithmetic operations in the linear
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spaces and their interval correspondents which are most commonly used in computa-
tion can be performed with maximal accuracy on digitial computers. A new fundamen-
tal computer operation, the scalar product, is introduced to develop this advanced
computer arithmetic.

In §5 a process of automatic error contro] called validation is described. Validation
delivers high accuracy with guarantees for scientific computations. Validation of com-
putations for a large class of numerical problems is made possible by advanced
computer arithmetic. High accuracy is furnished by coupling the scalar product with a
special numerical process called defect correction. Guarantees and error bounds are
obtained by interval techniques. This whole process establishes certain numerical algo-
rithms such as the evaluation of rational expressions as additional higher order arith-
‘metic operations.

In §6 we review the development of some programming languages in the context of
computer arithmetic. We describe a collection of constructs in terms of which a source
language (such as FORTRAN or PASCAL) may accommodate the methodology of
computer arithmetic in a user-friendly mode. For this, we organize computer arithmetic
into three levels of implementation. The first level, called basic arithmetic, deals with
elementary computer arithmetic augmented by the scalar product. The second level is
concerned with advanced computer arithmetic and its setting in linear spaces of compu-
tation. The third level treats the validation process, including the capability of a source
language to conveniently express the evaluation of expressions such as rational func-
tions with maximum accuracy.

In §7 the current state of implementation is reviewed.

Many of the computational examples used in this article, have been taken from
well-known collections [12], [25]. We stress that this is not a review paper on computer
arithmetic. It is a survey of the new approach to this subject which has been developed
by ourselves and a number of collaborators in recent years. For this reason the large
body of work which deals with computer arithmetic but which has not directly contrib-
uted to this new approach is neither surveyed nor referred to. For convenience to the
reader we do include a supplementary bibliography of important work in computer
arithmetic outside of the new approach.

We view as a high point of the new approach a coherency with which it addresses
the subject matter. A simple but rigorous mathematical foundation for computer
arithmetic is given. Applications and reduction to practice in scientific computation of
these ideas is included. Finally, implementations in hardware and software are also
described. We believe that new prospects for computation are likely as a result [16).

2. Floating-point numbers and elementary floating-point arithmetic. The real num-
bers can be defined axiomatically as a conditionally complete linearly ordered field R.
Independently of what this this abstract idea means, we are familiar with decimal
expansions in terms of which real numbers may be represented. Decimal expansions
employ a base b= 10. In the case of a general base, such an expansion has the following
form:

-
(1) x=edd, ,---didod_\d_,d_3--- =+ L d},
i=n

where » € {+, —) and b is an integer greater than unity. The 4, i=n(—1)—c0, are
integers between zero and b—1. That is,

) 0<d,sb-1 forall i=n(-1)-oco.
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For technical reasons stemming from the requirements of the uniqueness of representa-
tions of the form (1), we also require that

3) d,sb-2 for infinitely many i.

In (1) b is called the base or the radix of the number system. The point between d,, and
d_, is called the radix point, i.c., the decimal point whenb=10. The d,, i=n(—1)-oco,
are called the digits (of base b). (When b =2 the digits are called bits.)

Arithmetic operations for these infinite b-expansions are defined by means of
successive approximations. Let x and y be two real numbers. Truncation of the
b-expansion of x andy after the rth digit after the radix point gives the truncated
expansions x, and y,, respectively. For any of the arithmetic operations * &
{+,-,X%,/), the result x,s y, can be calculated following well-known rules. The
operation x* y for « €{+,—, X, /} for the full b-expansions is then defined as the
limit of the sequence x, s y,, obtained by letting » go to infinity. Such a limiting
process cannot be executed in a finite time. Thus for an approximation of the real
numbers and operations, floating-point numbers and floating-point operations are
used. Such numbers are representable and such operations are implementable on a
computer.

A normalized floating-point number x (in sign-magnitude representation) is a real
number x in the form

x= s mbe.

Here » € (+, —} is the sign of the number (sign(x)), m is the mantissa (mant(x)), b is
the base of the number system in use and e is the exponent (exp(x)); b is an integer
greater than unity. The exponent is an integer between two fixed integer bounds el, e2,
and in general, el <0 <e2. The mantissa m is of the form

!
m=Y d[i]b~".
im1

The d[i] are the digits of the mantissa. They have the properties d[i]€ {0,1,---,b—1)}
for all i=1(1)/ and d[1]+#0. Without the condition, d[1)+ 0, floating-point numbers
are said to be not normalized. The set of normalized floating-point numbers does not
contain zero. For a unique representation of zero we assume that sign(0)= +, mant(0)
=0.00---0 (/ zeros after the radix point) and exp(0)=el. A floating-point system
depends on the constants b,/, el, and e2. We denote it by R=R(b,l,el,e2).

A floating-point system R consists of a finite number of clements. They are
equally spaced between successive powers of b and their negatives. This spacing
changes at every power of b. Figure 1 shows a simple floating-point system R=
R(2,3, —1,2) consisting of 33 elements [12]. The successive powers of 2 are + 31, +1,
41, +2. The floating-point system R has a greatest and a least element. Each number
in R has to represent an entire interval of real numbers. For instance, in Fig. 1 the
floating-point number 3 might represent the indicated shaded interval. A floating-point
system has the appearance of a screen placed over the real numbers. Indeed, the
expression floating-point screen is often used.

Next we turn to the arithmetic operations +,—, X, /. These operations for real
numbers are approximated by floating-point operations. If x and y are floating-point
numbers, the exact point xXy itself is not usually a floating-point number of
R(b,l,el,e2) since the mantissa of x Xy has 2/ digits. For related reasons, the exact
sum x +y is also not usually a floating-point number. Since a computer must be able to
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el 27

1/2{0.100 |0.101 ] 0.110]0.111
0.1000.101 ] 0.110]0.111
2 ]0.100 J0.101 J0.110}]0.11}
4 ]0.100 |0.101 0.110 | 0.111

N = O =

NONZERO ELEMENTS OF LEAST

LEAST ELEMENT ———‘ T ABSOLUTE VALUE GREATEST ELEMENT
R
4 3 2 442021 2 3 4
.t 1ep et ¢ t powers of 2

F16. 1. A simple floating-point system.

represent the results of its own operations, the result of a floating-point operation must
be a floating-point number. The best we can do is to round the exact result into the
floating-point screen and take the rounded version as the definition of the floating-point
operation.

If = is one of the exact operations, +, —, X, /, let B denote the corresponding
floating-point operation. Then our choice of floating-point operations is expressed by
the following mathematical formula..

(RG) x @ y=0O(x+y) forall x,y€R andalls+€{+,-,X,/}.

In (RG), O is a mapping O: R—R. D is called a rounding if it has the following
properties (R1) and (R2).

(R1) Ox=x forall xER,

that is, the screen R is invariant under the mapping O.

(R2) xsy=>0OxsOy forall x, yER,

that is, O is monotonic on the real numbers.
The three familiar roundings: to the nearest floating-point number, toward zero or
away from zero have properties (R1) and (R2) and the following additional property.

(R4) O(-x)=-DOx forall xeR.

We impose this requirement of antisymmetry on many roundings.

Later on we shall develop arithmetic techniques for supplying guarantees in float-
ing-point computation. For these techniques, we need the monotone upwardly and the
monotone downwardly directed roundings A and V. These two roundings are char-
acterized by (R1), (R2) and the additional property

(R3) Vxgxand xgAx forall xeR.

Thus, V rounds to the left and A rounds to the right. However, the roundings V and

A do not have the antisymmetry property (R4).
All operations defined by (RG) and a rounding with the properties (R1)-(R3)
produce results of maximum accuracy in a certain sense which is rounding dependent.
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In particular, between the correct result (in the sense of real numbers) and the ap-
proximate result x @ y (in the sense of the screen of floating-point numbers) no other
floating-point number in the screen can be found.!

The proof of this property follows easily from (RG), (R1) and (R2).

Proof. Assume that u, vER are two adjacent floating-point numbers with the
property usx* ygv. Then from (R2) we obtain OugO(x * y)<Ov. Then (R1) and
(RG) deliver the desired result ugx 8 ygv. O

For convenience, we shall refer to the class of roundings which satisfy (R1), (R2),
and (R4) along with the special roundings A and V as admissible roundings. We may
summarize this discussion by saying that admissible roundings generate maximally
accurate floating-point arithmetic through use of (RG).

Algorithms for implementation of the operations defined by (RG) and admissible
roundings which are used on many computers can be found in the literature (15], [18],
[19], [21). Here we review the main features of implementation.

At first sight it seems to be doubtful that formula (RG) can be implemented on
computers at all. In order to determine the approximation x @ y, the exact but
unknown result x * y which is in general neither computer specifiable nor computer
representable seems to be required in (RG). It can be shown, however, that whenever
x * y is not representable on the computer, it is sufficientto replace it by an appropriate
and representable value x # y. The latter has the property O(x » y)=0(x & y) for all
roundings in question. Then x & y can be used to define x @ y by means of the
relations

x B y=0(x*y)=0(x%y) forall x, yeR.

There are fast algorithms for an implementation of (RG) on computers. These algo-
rithms consist of the following five steps:

1. Decomposition of x and y, ie., separation of x and y into mantissa and
exponent. If a floating-point number is not stored in a single word, this step is
vacuous.

. Determinationof x % y. It may be that x& y=x s y,

. Normalization of x § y. x % y requires normalization if its mantissa has one or
more zero digits following the radix point. Normalization consists of repeatedly
shifting the mantissa left by one digit and decreasing the exponent by unity
until all such zeros are eliminated. A single shift right may also be necessary in
the case of addition. If the result of 2 is already normalized, this step can be
skipped.

. Rounding of x % y determines x @ y=0(x ¥ y)=0(x* y).

. Composition, i.e., assembling of the mantissa and exponent of the result into a
floating-point number. If floating-point numbers are not stored in single words,
this step is vacuous.

W N

v o

Figure 2 shows a graphical representation of these five steps in the form of a flow
diagram. Since we deal with monotone roundings only, the normalization has to be
performed before the rounding, since otherwise the monotonicity of the rounding is
lost. Division can be executed in a manner that eliminates the need for normalization.

1We shall introduce the term maximal-O accuracy later to describe this concept of accuracy for a class of
computer operations, since the accuracy depends on the rounding 0. For convenience we drop the suffix
(-0), since confusion will not occur.
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F1G. 2. Flow diagram for the arithmetic operations DC: decomposition; A,S: addition and subtraction; M.

_multiplication; DV: division; N: normalization, R: rounding; C: composition.

In the implementation of (RG) it is essential that x B y is produced by O(x ¢ y) for
all x,y€ R. This can only be achieved if the accumulator that performs the operations
is long enough. There are still many computers in the marketplace which for the
execution of the floating-point operations use an accumulator which is only as long as
the floating-point mantissa. We shall presently use a simple example to show that (RG)
cannot be strictly realized with such an accumulator. While there are many tricky ways
to implement floating-point arithmetic, there have emerged two standard approaches to
this implementation which we shall discuss: the implementations by a so-called long
accumulator and by a so-called short accumulator. These two accumulators accommod-
ate all admissible roundings of interest. The long accumulator is a computer register
with one digit, which may be a binary digit,in front of the radix point and 2/+ 1 digits
of base b after the radix point. See Fig. 3a. The short accumulator is a computer
register with one digit, which can be a binary digit, in front of the radix point and /+ 2
digits of base b plus one binary digit after the radix point. See Fig. 3b.

(a) ? ] / 1]
) — ~
1 bit 2/ + | digits of basc b

w [] / L1 1]
] ! + 2 digits of base b |
1 bit 1 hit

FiG. 3. (a) Long accumulator; (b) short accumulator.

An accumulator shorter than the short accumulator cannot always deliver correct
and optimal results (in the sense which we have specified) for the floating-point
operations. The bit on the left end of both accumulators is used for a possible overflow
which may occur in case of addition. If the short accumulator is used for multiplication,
the mantissa of the product has to be built up from the right as illustrated by the
following illustration. The bit on the rightend of the short accumulator is needed in the
cases of the roundings A and V.
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¢ ¢
0.4403x0.1779
39627 1
30821
3478 partial product of length £ + 1
3082!17 } and

3429 partial summands of length / +2
04403

0.0783.29 )

0.4403680.1779=0.7833x 10"

We now give a simple example which shows that any reduction of the length of the
accumulator causes a failure to deliver the optimal results we have specified. Take /=4
and the decimal system b=10. We show that an accumulator of /+1=35 digits fol-
lowed by an additional binary digit d after the point is not capable of delivering correct
results as defined by (RG) in all cases. Let x=0.1000 % 108, y= —0.5001 X 10", so that
x+y=0.099994999 x 10%, If we now apply the rounding to the nearest floating-point
number (to four decimal digits), we obtain: x B y=0.9999 x 105. However execution
in an accumulator of 5 decimal digits leads to a different result, namely 0.1000 x 10°.

In practice, the choice between the short and long accumulators depends on side
considerations such as the technology employed and fine points in the design. However,
a fundamental perception of numerical analysis is that advanced optimal methods of
computer arithmetic (which we shall develop below) require the accumulation of the
full double length product of two floating-point numbers. Such double length products
cannot be efficiently produced by the short accumulator. This consideration gives very
high priority to the choice of the long accumulator for the execution of floating-point
operations. Indeed use of the short accumulator would require a complicated simula-
tion process for accommodating the double length products needed for the approach to
high accuracy computer arithmetic in product spaces which we develop below.

Although this requirement for the double length product is well known in numeri-
cal computation, many processors continue to be built without this feature, some even
adhering to a currently fashionable (albeit dubious) claim of furnishing high accuracy
in computation.

Let us return to our earlier point that although floating-point operations with
maximum accuracy can be implemented and realized in computers, results of scientific
computations composed of these operations may be grossly incorrect. All mathematical
statements depend critically on the premises upon which they are built. Arithmetic
expressions or numerical algorithms are not exempted from this requirement. If com-
promises are made such as the replacement of full precision addition or the replace-
ment of the full set of real numbers by a finite set of floating-point numbers, we are
obliged to accept compromises in the result of evaluating that expression or executing
that numerical algorithm. Perhaps what is surprising is that the discrepancies in the
results can be catastrophically large even though the compromises in the premises are
quite small. We illustrate this phenomenon with a few examples.
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1. Cancellation. Consider a floating-point system with the base =10 and a
mantissa of 5 digits. We compute xBy, where

x=0.10005x10* and y=-0.99973x10%.
Using the short accumulator, we get

0.10005 % 10° — 0.99973 x 104 = 0.1000500 x 10*
—0.0999730%10°

0.0000770 X 10°
normalized: 0.7700000 X 10}
rounded: 0.77000 x10!

That is, xBy=0.77000 X 10'. The occurrence of leading zero digits after the decimal
point is called cancellation. The process of normalization then fills in zeros at the right
end of the result. The rounding has no effect, i.e., the result is error free even in the
sense of an exact subtraction of real numbers.

Now suppose that each of the floating-point numbers x and y are themselves
rounded results of products of two floating-point numbers, i.e., x=0(x, X x,) and
y=0(y, Xy,). The products x, X x, and y, Xy, which have mantissas of double length
are taken to be

x; X x,=0.10005482410 x 105,
Y1 Xy,=0.09997342213 X 105,

Rounding gives the values of x and y used previously. Subtracting, we now get

X, X X3—y, Xy,=0.10005482410 X 10°
-0.09997342213 X 10°

0.00008140197 x 10°
normalized: 0.8140197 x 10!

That is, x, Xx,—y, Xy,=0.8140197 X 10"

Comparison with the result xBy=x,Ex,B8y, By, obtained earlier shows that no
digits of the mantissas coincide. The results agree only in magnitude. Cancellation
occurs whenever two nearly equal numbers are subtracted. Although the single subtrac-
tion step is error free, cancellation is very dangerous if the data themselves are already
rounded.

Cancellation is the cause for many failures in floating-point computation. Note
that the result O(x, X x,—y; Xy,) prescribed by our methods (compare (RG) above)
can be obtained if the products x, Xx, and y, Xy, are computed to their full double
length and then subtracted using the long accumulator. Indeed, in this case we get

O(x, X x,—y, Xy, ) =0.81402 X 10,

an optimal result since no floating-point number lies between it and the exact result.
Cancellation may also occur over a long chain of additions/subtractions. In this case,
one speaks of global or catastrophic cancellation. Long computations tend to conceal
the occurrence of global cancellation as the following example shows.
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2. Global cancellation. Using Taylor series, the following formula for the exponen-
tial is derived. ® .o
=Y £
1

v=0 "
This series is absolutely convergent for every value of z in the complex plane, For z
real and negative the terms in the series alternate in sign. In this case the magnitude of
the error committed by truncating such an alternating series is less than the magnitude
of the first term neglected. Let us use this series to calculate the value of the exponen-
tial for z= —20 and employing a floating-point system with 6 decimal digits in the
mantissa. In Fig. 4, we display a list of the terms of the series for v=1(1)62. The

a s =2,000000000000£+01

o 1 . 00000000000 000000
) =20.00000000000000000
2 200 . 00000000P000 00000
3 -1333.3300000¢000000000
4 6666 . 630000000000 00000
S ~26664 . $00000080C0000000
L) $8888. 70000008000000000
7 =233940.00000000000000000
] $34920.00000000000000000
L4 =-1810930. 000000000000 00000

10 2021 040. 0000000000000 000

33 =3130430, 0000000 000000

12 $531080.000000000000600000

13 =-13153900.9000000

18 10793400.00000000D000 00000

13 «~23030100. 00000000000 000000

16 313224600 .00000000D00000000

1?7 -346830100 P

10 40944400.00000000P00000000

1 ~83099600.00000000D000 00000

20 43099400. 000000000 0000000

21 -8104 +00000000D000000 00

22 37319400.00000000p00000000

23 ~32048300 "

28 27040300 0p

23 -21632;

2‘ 164 oD

27 =12326100.00000000p000000 00

28 8904340 op

2 -6071970

30 4047990 . 00000000D00000000

31 =261 34600 .00000000D00000000

32 1632230 . 00000000D00000000

33 ~989242. 00000000D00000000

38 391907 . 00000000D00000000

35 «332318.00000000DOVOO0000

3 184732 . 00000000D00000000

37 «99933 . 10000000D00000000

3 325553 .. 30000000D00000000

30 «26991 . 40000000D000000 00

40 13473, 70000000 00000000

41 -6373.351000000000000000

a2 3130.28000000D00000000

a3 «1439 . 93000000D00000000

44 661 .7860000

43 =294 . 1270000

a 127.8810000

a7 =34.417400000000

a0 22.6739000

(1] =9.2344300

S0 3.7018600

31 -1.4317300

92 0.338330000000

33 «0.21069800D000

Se 0.0700343

93 -0.020374000

Se 0.01013440D 000

87 -0.00333400000000000

39 0.00122621000000000

39 =0.0004134 4800000000
40 0.000138333500000000
o1 -0.00004342790000000
62 0.000014863420000000

...................................
101 .8960000

©0.00000000206313362

F1G. 4. Floating-point summation of series for exponential.
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ARITHMETIC OF THE DIGITAL COMPUTER 1

computed value of the sum of these terms is 181.496. The summation was stopped at
this point because the last summand is less than 10~7 times the sum to the indicated
terms. Stopping at this point is conventional numerical practice, since according to the
error property of the alternating series already noted, further summing ought not to
influence the computed result. However, the correct result is 0.00000000206115.... We
have drawn a vertical line in the display of the summands between the 8th and 9th
places after the decimal point. As we now see from the correct results, all digits of every
summand to the left of this line should cancel.

The correct answer is of the order 10~° while the computed floating-point result is
of the order 103. More cannot be expected of a result computed with 6 decimal places.

" "To see this note that the largest summand corresponds to v=20, and that it has the
- value 43099600. This summand cannot be correct to more than 6 places. Thus, the first

two places to the left of the decimal point of this summand have no meaning, and any
sum involving them can likewise have no meaning in these two places. Then the global
cancellation to the left to the indicated vertical line can likewise not occur in these two
places except by the sheerest accident. In fact, the required cancellation does not occur
in the computation, and so, the leading digits of the computed sum indicated are
incorrect. The reader should try to compute the solution of the following examples
(taken from [25]) with his pocket calculator, personal computer or by use of a mainframe
by himself. The correct result for each of the problems is given, and in most cases, the
answer obtained by a computer using a floating-point system with a 14 hexadecimal
digit mantissa (i.e., base 16 or approximately 17 decimal digits) is also given.

3. Scalar products. Calculate the scalar product of two vectors 4 and B with five
elements each:

SP=Al XBl1+A2XB2+A3X B3+ A4 X B4+ A5X B5

for
Al = 2.718281828, Bl = 1486.2497,

A2 = —3.141592654, B2 = 878366.9879,
A3 = 1.414213562, B3 = -22.37492,

A4 = 0.5772156649, B4 = 4773714.647,
A5 = 0.3010299957, BS5 = 0.000185049.

The correct value of the scalar product is
—1.00657107x10°1,
The computer delivers
+0.335... x10°7,
so that even the sign is incorrect. Note that no vector element has more than 10 decimal
digits.
4. Arithmetic expressions. Evaluate the arithmetic expression
(1682 XY*+3X3+29XY2-2X5+832) /107751
for
X=192119201 and Y=235675640.
The correct answer is 1783. The computer delivers

—5.385... X102,
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5. Polynomial evaluation. Evaluate the polynomial

P(X)=8118X*-11482 X%+ X2+ 5741 X - 2030
for
X=0.707107.

The correct value of the polynomial is

-1.91527325270... x 1071,
The computer delivers

P(X)=—1.97815097635611891 x 101
6. Linear equations: Solve the set of equations
64919121 X—-159018721Y =1,
41869520.5X —102558961Y = 0.
Expressions to evaluate X and Y exactly are
Y =(41869520.5,/64919121) /(102558961 — 41869520.5 x 159018721 /6491912),
X=(102558961,/41869520.5)Y.
The correct results are

X=205117922, Y=283739041.

The computer delivers
X =0.987372352669808606 x 10~!,
What result does your computer deliver?
7. Extrapolation. The following values are given

X 5201477 5201478 5201479
Y 99999 100000 100001 °

Obviously the three values fit on a line. Therefore, a best linear approximation L(x)=
mx+ b must yield L(5201480)=100002. Formulas for the computation of m and b are

m_Xl XY1+X2X Y2+ X3XY3-1(X1+ X2+ X3)(Y1+ Y2+ Y3)
X1+ X224+ X32 - 1( X1+ X2+ X3)*

Y=0.403093099594116210 x 10~!.

’

b=3 (V14724 Y3)~ 2 (X1+ X2+ X3).
Evaluate m and b using these formulas and determine L(5201480). The correct results
are m=1, b= —510478 and L(5201480)=100002.
8. Differentiation. Consider the function

49701 — 4923
(1)=—3 :
4970¢*—-9799¢ + 4830
An approximation for the value of the second derivative f”(¢) of a function f(¢) may
be computed from the expression :
[(t—h)=2f(t)+f(t+h)
h2
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with some small value for A. Determine an approximation of f"(1) with the help of the
above expression for h=10"4, h=10"5, k=10 The correct results are:

Approximation with h=10"*: 70.78819....
Approximation with A=10"%: 93.76790....
Approximation with h=10"%: 94.00000....

The exact value for the derivative is f”(1)=94. The computer delivers:
Approximation with h=10"4: 70.7804197738837856....
Approximation with &=10"5: 93.1278568018018011654....
Approximation with A=10"8; 30695.4411053317471....

9. Expression evaluation. Compute the value of the expression
83521y8+ 578x2y* —2x*+ 2x6—x®

for x=9478657 and y=2298912. The correct value is

—179689877047297.0.
What is the result obtained on a pocket calculator? on a large computer?

10. Complex division. Compute the quotient of two complex numbers

(a+ib)/(x+iy)
for

a=1254027132096, x=886731088897,
b=3886731088897, y=627013566048.

The correct value of the quotient is

1.41421... +i8.47861... X 10%.

These examples show that computers supplied with the best possible implementation of
the four arithmetic operations +, —, X,/ can deliver arbitrarily bad results in prob-
lems of the simplest form. One may imagine the possible implications of incorrect
results in computation for more serious purposes such as power grids, reactor manage-
ment, weapon systems, aircraft design and control, vehicle stability and so on.

The reader should not be discouraged if his or her attempts to solve these prob-
lems did not produce the correct answer. Most computers in the marketplace today can
do no better. The examples make a bad case for floating-point arithmetic. How is it
that the digital computer has for many years been used very successfully in numerical
computation? Numerical analysts have developed great skills and sophisticated meth-
ods to detect such errors and to maneuver around them. These specialized techniques
require extensive study and much experience to be used. Moreover their use adds
considerable time and expense to the computational process. Not every computer user
is sophisticated and experienced. The inexpert user is often unable to detect such errors
and is usually at a loss of how to proceed when such errors occur.

In the following sections we show how floating-point arithmetic has been advanced
so that the digital computer can automatically control and rectify many errors inherent
in floating-point computation. Indeed, a new capability called validation is possible in
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many cases, whereby the computer gives a result and an absolute assertion of its
accuracy. In this manner, the computer becomes a precise scientific instrument rather
than an experimental tool.

3. Historic remarks and motivation. The Roman number system is hardly one
upon which to build a computing machine. What is surprising is that this ancient
system was in widespread use in Europe up to the 15th century. It was supplanted by
the Arabic number system, itself a system dating from antiquity, in other parts of the
world. Once the Arabic number system became widely adopted in Western Europe,
mechanical calculating devices of all sorts began to appear. Better known examples of
these devices are associated with the names of Blaise Pascal and Gottfried Leibniz.
Pascal is credited with having built and used an adding machine. A little later Leibniz
invented the principle of the stepping cylinder (Staffelwalze) by means of which it was
possible to perform all four operations of arithmetic directly. This device, in one form
or another, could be found in mechanical calculators up to the present day.

The realization that the intellectual process of computation could be implemented
by mechanical devices was a major fundamental discovery. This discovery created an
industry which developed further principles and concepts of mechanical computation,
as well as devices by means of which they were implemented. The descendants of these
venerable firms could be found pursuing the same enterprise well into the 20th century.
Some of them are currently in the electronic computer business.

With the invention of the logarithm by John Napier and others, the appearance of
the slide rule soon followed. This was an essential step in the development of analog
computing devices. Although not as widely spread as the digital computer, analog
devices still exist today in sophisticated electronic and mechanical form.

The relatively slow speed of mechanical computing devices supported an interac-
tive mode of computation whereby the user monitored the result of each operation as it
was produced. Thus, error control and significance of results could be dealt with by the
user’s understanding of what was going on. Many of us who are familiar with the use of
a slide rule or a product calculator have performed this kind of error control of a
machine aided computation. A rule of thumb had it that in this mode of interactive
computation, a person could perform about 1000 reliable computations per day. This
translates into approximately 0.03 operations per second for a nine hour day.

In the period 1920-1940, a breakthrough in computation was made. This was the
idea of the stored program computer in which the program itself could be stored in the
computer and operated upon by the computer as if it were data. This breakthrough is
credited variously to Alan Turing, Emil Post, John Mauchly and John von Neumann.
Combining this with the technological electronic developments of the 20th century led
to the first generation of modern digital computers. These computers provided a
gigantic gain in computer power over their mechanical predecessors. In the early fifties,
these computers were able to execute on the order of 30 floating-point operations per
second which, in fact, were implemented as subroutine calls. This was a thousandfold
gain in speed. The modern computer age is dated from this period.

Early electronic computers often represented their data as fixed-point numbers.
This imposed a scaling requirement. Problems had to be pre-processed by the user so
that they could be accommodated by this fixed-point number representation. This
pre-processing proved to be an enormous burden. It was the introduction of the
floating-point representation in computation in the early fifties which largely eliminated
this burden. But it turned out that the floating-point representation made the error
control problem even more difficult. There was no longer any hope for error control of
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computations by the traditional interactive methods used in the cases of mechanical
desk calculators or the slide rule.

The enormous gain in speed and the introduction of floating-point mandated the
development of methods for more systematic control of errors in computation. Such
methods, that were developed in those days and are still used today, are based on
estimates of the error of each individual arithmetic operation. These ideas and concepts
trace back to Cornelius Lanczos and Wallace Givens and were heavily exploited by
James H. Wilkinson and others. These methods are highly sophisticated. They led to
the two techniques of error analysis commonly called forward and backward error
analysis. Both are analytic methods. Since the computer is able to execute a large
number of operations, a large number of error estimates have t0 be made and their
propagation through the whole algorithm has to be studied. For instance, multiplica-
tion of two complex matrices of 100 rows and columns requires about 8 million such
estimates. The propagation of these estimates in a complicated algorithm requires a
rather complicated analysis which can only be performed in special types of problems.
Even then, the results are usually theoretical and of limited practical value. Indeed,
even sophisticated users tend to avoid this approach.

Thus, we find that other methods for judging the quality of results delivered by a
computation have arisen. We find many computers equipped with both single and
double precision and sometimes even with extended capabilities of precision in arith-
metic. The scientific computer user usually adopt.s one of the following techniques for
Judgmg the quality of his output.

. He computes a residual, i.e., he inserts the computed answer into the problem
expression and evaluates the remainder, hoping that a small remainder indi-
cates a good solution.

2. He repeats his calculation in double or extended precison, checking for agree-
ment, hoping that good agreement indicates a good solution.

3. He reruns his problem with slightly changed input data, checking the variation
in the results. Small variation is interpreted as stability in the computational
process and hopefully a good solution.

These approaches frequently give good indication of the quality of a computation.
However, they may also be completely unreliable.
The following pair of equations [12] shows how unreliable method 1 may be.

0.780X +0.563Y=0.217,
0.913X+0.659Y =0.254.

Two different approximate solutions are proposed.

X=0999, Y=-1.001,
and v _ 0341  Y=—0087

Which one is better? The usual check is to substitute them into the set of linear
equations. We find the following residuals:

0.780X +0.563Y —0.217= —0.001243,
0.913X+0.659Y — 0.254 = —0.001572,
0.780 X +0.563Y —0.217 = —0.000001,
0.913X+0.659Y - 0.254=0.

It seems evident that the second approximation is a better solution, since it makes the
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residuals much smaller, ( —0.000001,0.) compared to (—0.001243, —0.001572). How-
ever, the true solution is X=1, Y= —1, as one can verify easily. Hence, the first
approximation (X =0.999, Y= —1.001) is much closer to the true solution.

The second traditional approach for checking the accuracy of a computed result is
to recalculate, each time increasing the number of digits with which computations are
performed. Thus, we find most computers equipped with single and double precision
and sometime even extended precison capabilities in arithmetic. The idea underlying
this second approach is closely related to the definition of the operations for the real
numbers through limiting processes which we discussed previously.

The result of such an operation was defined as being the limit of the result
obtained by operating on truncated parts of the expansions representing the operands.
However, the analogy is only superficial. Indeed this approach only displaces the
problem, but does not solve it in principle. It is evident that the examples displayed
above have counterparts which demonstrate equivalent deficiencies in the double or
extended precision computation of any computer. For our simple example,

1050+ 812-10%+10% + 511 - 105 =1323,

almost all digital computers will return zero, whether using single, double or extended
precision. In general, the user does not know how many digits are needed to obtain a
correct answer. To show that the third method is also unreliable, consider the two linear
equations :
100000x + 99999y = b,,
99999x + 99998y = b,.
The following are computed values of x and y for different choices of b, and b,.
b,=200000, x= 200000,
b,=200000, y= —200000,

b,=199990, x= 199990,
b,=199990, y=—199990,

b,=200010, x= 200010,
b,=200010, y= —200010.

This seemingly regular behavior of the solution misleads us to the conclusion that the
problem is stable and that the computer solutions are reliable. To see just how badly
wrong this conclusion is, consider the totality of all solutions of the linear system of
equations corresponding to all possible choices of b, and b, in the following range
which contains the values of b, and b, already prescribed.

199990 5 b, < 200010,

199990 < b, < 200010.

The totality of solutions which correspondingly arise are

—1 800 000 5 x <2 200 000,
—2200 000 5y <1 800 000.

Moreover these bounds are sharp. This set contains the solution x=y=1, which is
obtained for b, =199999, b,=199997.
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In numerical mathematics, the so-called condition number is often used to calibrate
the sensitivity of a problem to input data. A large condition number characterizes a
highly sensitive problem, while a small condition number characterizes a stable prob-
lem. Expressions for condition numbers are developed for many classes of numerical
problems. For most problems computation of the condition number is as difficult as
computation of the solution of the problem itself. For such problems employing the
condition number is not a practical method for dealing with the accuracy of a com-
puted solution. For some linear matrix problems, so-called cheap condition estimators
are known to be useful for error estimation if some care is taken {11}, [27], [28].

Recall now our earlier remark that the appearance of the first electronic computers
in the early fifties, i.c., the step into the computer age, meant a thousandfold gain in

‘'speed (102). The actual computer revolution, however, happened afterwards. The fastest

computers today are able to execute of the order of 300 million (3 X 10%) floating-point
operations in a second.

This is a gain in speed by a factor of 107 over the electronic computers of the early
fifties. Compared with a person working with a mechanical desk calculator or pocket
calculator of today, this is a gain in speed of the order of 10, See Fig. 5. To help grasp
the significance of this factor, consider the following illustration. The human popula-
tion is about 5 % 10°, So, if we equip every man, woman and child with a mechanical
desk calculator or an electronic pocket calculator, they could, while they are all work-
ing, perform as many operations as only one of today’s faster computers.

OPERATIONS

PER SECOND
0o - /
108 1~
L
-
109 1o’
102 |-
(] [ 1 L n L 1 |°I‘
10 1923 oTs T
u J
0 ~

FI1G. 5. The increase in computing speed.

We now return to our consideration of the error analysis of the computational
process. The theoretical methods of backward or forward error analysis discussed
earlier translate into 300 million error estimates having to be carried out for each
second of a computational process. Additionally, the propagation of these errors through
a complicated algorithm has to be studied. These techniques are no longer in balance
with the extremely enlarged speeds of today’s computers. On the other hand, the more
pragmatic methods 1,2 and 3 were all crude and finally unreliable.

In other words, when the capability of computers was relatively modest, the
calculation could somehow be controlled by the user. The users were small in number,
they were relatively sophisticated and they could hand-tune their computations. Today,
problems which are dealt with have become enormously large and ramified, and the
body of computer users comes with members of every degree of experience and
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sophistication. It is simply no longer possible to expect computers to be controlled by
hands-on methods. There remains no alternative but to furnish the computer with the
capability of control and validation of the compwtational process.

The advanced theory of computer arithmetic [18], [19] offers an approach to this
question. As motivation for advanced computer arithmetic, consider a system of linear
equations with coefficients that are representable in the computer without rounding
errors. Then all information needed for the correct solution of the problem is present in
the computer. If the problem is ill-conditioned, it may happen (as we saw earlier by
means of simple examples) that the computed result has little to do with the correct
solution of the probléem. This means that information which was originally present in
the computer has been lost by computation. The roundings are responsible for it. The
act of rounding which accompanies each floating-point operation typically discards
some digits. We may say that each rounding means a loss of information.

Then the guiding principle of an advanced computer arithmetic and error analysis is
to reduce the number of roundings in any particular computational process. A central
question remains: Which roundings can be omitted and which cannot?

The basic feature of advanced computer arithmetic is to augment the operator set
, B, @, @ for floating point numbers by another operation ® which turns out to be
fundamental. @ is the floating-point implementation of the inner or dot product (or
scalar product) of two vectors. Consistent with the implementation requirement of
maximum accuracy for the four basic operations, the new scalar product must be
implemented with maximum accuracy as well, ie,, with only one rounding. So, if
a=(ay,a,,--,a,)and b=(b,,b,,---, b,) are two n-dimensional floating-point vectors,
the scalar product must be defined by

al® b= D( Y a,.xb,) =0(a; Xb,+a,Xby+ -+ +a,Xb,)
i=1
for all vectors and all relevant dimensions.

Augmenting the floating-point operator set in this manner goes a long way toward
controlling the loss of information inherent to floating-point calculations. The theory of
computer arithmetic shows that with the augmented set of five floating-point opera-
tions, all arithmetic operations of the most customary linear spaces of computation can
be performed with maximum accuracy. These spaces consist of the floating-point
representations of the real and complex numbers, of the vectors and matrices over these
representations and of the interval spaces over all of these.

After the four basic operations 8, 5, @ and 1, the linear space operations, such
as the product of two matrices or the product of a matrix by a vector, are the most
fundamental operations in numerical analysis. The augmented set of five basic
floating-point operations, B, 8, @, @ and B is sufficient for the execution with
maximum accuracy of these linear space operations.

Since these linear space operations are expressible in terms of scalar products, the
five basic operationsare in a sense necessary as well. We may expect that this enlarged
set of maximally accurate computer operations, consisting of linear space operations
and their interval counterparts will lead to better results in numerical computations.
The enlarged set of operations support yet another fundamental feature essential for
high accuracy in computation. The availability of exact scalar products, as well as
matrix and matrix-vector operations with maximum accuracy, make it possible to apply
a special mathematical technique in many cases, the so-called defect correction process.
This process is often of scalar product type. Information that has already been lost by
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rounding effects during an initial computation can often be recovered by defect correc-
tion. Such corrections can be made to maximize floating-point accuracy, and in princi-
ple, they can provide arbitrary accuracy. The corresponding interval operations permit
guarantees for these highly accurate results to be obtained also. Combining these two
techniques within a fixed-point iteration framework, allows us to append a so-called
verification or validation process to the computation. This process supplies a set of
bounds for the solution to the problem being computed. Moreover, the computer
delivers a proof of the existence and uniqueness of the solution of the problem within
the computed bounds by verifying the hypotheses of an appropriate fixed-point theo-
rem. We refer to the bounds and the existence proof as computer generated guarantees

for the problem, simply as guarantees.

For particularly difficult problems, the validation process may not terminate
within a specified time limit or iteration number limit. In this case, a warning is given
to the user. Modification of the solution method is then in order.

These general techniques can be applied to fundamental problems of linear alge-
bra, such as solving linear systems of equations, matrix inversion, polynomial or
arithmetic expression evaluation, eigenvalue-eigenvector computation and linear opti-
mization. These problems are usually solved with maximum accuracy and guarantees.
This capability for these problems can be interpreted as providing additional high order
arithmetic operations. Experience has shown that these methods work well even for
highly ill-conditioned problems. For profoundly ill-conditioned problems, the system
may fail to produce a result. In this case, notification is supplied to the user.

The reader should contrast this methodology with customary numerical practice,
which only makes use of elementary computer arithmetic, that is, the four basic
operations B, 8, @ and @. Results, which are supplied, are often good, but they can
also be bad, even arbitrarily so. Usually no information about bounds, existence or
uniqueness is provided by the conventional computation. This concludes our brief
preview and motivation of advanced computer arithmetic. A more detailed discussion is
given in the chapters which follow.

4. Advanced computer srithmetic. In this chapter, we deal with computer arith-
metic in higher mathematical spaces (product spaces) such as spaces of complex
numbers, of real and complex vectors, of real and complex matrices, of real and
complex intervals, as well as the spaces of real and complex interval vectors and
interval matrices. Arithmetic operations in computer representable subsets of these
spaces are defined by a general mathematical mapping principle which is called a
semimorphism. These arithmetic operations are distinctly different from the customary
ones which are based on elementary computer arithmetic.

To make the differences clear, we begin with a brief review of the customary
operations. Computers built for scientific computation are customarily equipped with
the four floating-point operations B, B, B and @. Sometimes the eight additional
corresponding operations which employ the monotone downwardly directed roundings
(V,V,¥,V) and the monotone upwardly directed roundings (A,A,A,A) are also
provided. In the higher mathematical spaces, which we listed in the previous paragraph,
arithmetic operations are performed by evaluating well-known mathematical formulas
for them in terms of the given elementary floating-point operations (four or twelve in
number, as the case may be).

For instance, if a=a, +ia, and 8= B, +iB, are two complex floating-point num-
bers or a=(a,,a,,--,a,) and b=(b,,b,,--,b,) are two vectors of floating-point
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numbers, the following product formulas are well known.

aXB=ayX B —a, X B +i(ey X By +a; X By),
a'b=alxbl+aszz+ A +a,,Xb,,.

Their computer approximations are now defined by rewriting these formulas in terms
of the given floating-point operations, i.e.,

aBf=a\@B,Ba,88,+i(qDB,Ha,BB,),
a E ﬁ'albldzbz e manmb,,.

In §2 we showed, by means of simple examples, that the computational error associated
with these expressions may become quite large and that this error depends critically on
the given data.

Let us now make a tabulation of these higher spaces of computation. In addition
to the integers, numerical algorithms are usually defined in the space (set) R of real
numbers and vectors ¥R and matrices MR over the real numbers. The corresponding
complex spaces C, ¥C and MC also occur. All these spaces are ordered with respect to
the order relation <. In all product sets (for us all sets other than R), the order relation
is defined componentwise. The order relation is a partial order. Using the order relation
<, the notion of intervals can be defined in all these spaces. If 2 < b, an interval [a, 5]
is the set of all elements between them. That is [a,b):= {x|agx g b}. If we denote the
set of intervals over an ordered set { M, <} by IM, we obtain the spaces IR, IVR,
IMR and IC, IVC, IMC. See the second column in Fig. 6.

1 2 3

R 2 R

VR > VR

MR =) MR

PR = R =} IR
PVR bu) IVR o) IVR
PMR > IMR = IMR
c =] CR

[ > VCR

MC =) MCR

PC o IC > ICR
PVC = wc = IVCR
PMC =) IMC > IMCR

F1G. 6. Table of spaces occurring in numerical computations.

Most algorithms in numerical analysis are defined in one or several of these spaces.
However, these algorithms cannot usually be executed in these spaces. For execution,
we use computers. A computer contains only a subsystem R of the real numbers. R is
the set of computer reals or floating-point numbers. (Sometimes several such systems of
differing precision are available.) Vectors (n-tuples), matrices (n X n-tuples), complexifi-
cations (pairs), vectors and matrices of such pairs, as well as the corresponding sets of
intervals, can be defined in terms of R. Doing so, we obtain the spaces VR, MR, IR,
IVR, IMR, CR, VCR, MCR, ICR, IVCR and IMCR, which are listed in the third
column of Fig. 6. We indicate set-subset relations in Fig. 6 by means of inclusion
symbol D.

Having described the sets listed in the third column of Fig. 6, we turn to the
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arithmetic operations to be defined for these sets. Our definition of these operations is
essentially different from the conventional one. These operations are supposed to
approximate the operations in the corresponding sets listed in the second column. The
operations are well known in any of the spaces R, VR, MR, C, VC and MC of the
second column. The powerset PM of any set M is defined as being the set of all subsets
of M. The powersets of the sets just enumerated are listed in the first column of Fig. 6.
Now if » is any operation defined in M, then a corresponding operation * can be
defined in the powerset PM as follows.

A+ B:= {asblacANbEB)} forall A4, BEPM.

This definition extends every operation of M into the corresponding powerset PM.
Summarizing, we can now say that the operations in the sets listed in the leftmost
element of every row in Fig. 6 are always known. Of course, all of these operations are
ideal mathematical operations. We now use these ideal operations to define operations
in the subsets on the right-hand side of Fig. 6, row by row, using a general mapping
principle.

Let M denote any set of Fig. 6 in which the operations are known and N the
subset on its right in the same row. For each » in M, we define an operation ® in N
as follows:

(RG) a® b:=0asb) foralla, bENandforall =.
Here O: M — N denotes a mapping with the following properties.

(R1) Da=a forallaeN (rounding).
(R2) agb=2Dag<Db foralla, be M (monotonicity).
(R4) O(~a)=-Da forallaeM (antisymmetry).

In the case of the interval sets of Fig. 6, the order relation < means set inclusion €. In
this case, we also require that the rounding O has the property

(R3) a<Da forallacM  (upwardly directed).

Property (R3) is referred to as the property of isotony of the rounding D. In mathemati-
cal settings, a set with operations is sometimes considered where, in fact, the operations
are seemingly not executable. Mathematicians then usually look for another set with
executable operations and try to arrange an isomorphism between the two sets and
corresponding operations. Isomorphism is the strongest relevant mathematical mapping
principle. It has the property that the inverse image of the result of a computation in
the image set is the result that would have been obtained if the computation could have
been executed in the original set.

Since the operations in the leftmost element of each row of Fig. 6 are not computer
implementable, we have a situation of the type just described. However, in Fig. 6
set-subset pairs occur which are of different cardinality, and isomorphisms cannot be
established between such sets.

A somewhat weaker mathematical mapping principle is that of a homomorphism.
It can be shown by simple examples [19] or by a theorem that even homomorphisms
cannot be established between the relevant sets in Fig. 6.

Now we can try to weaken the mapping properties of a homomorphism still
further. Doing so, we reach a mapping correspondence with our properties (RG), (R1),
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(R2), (R3), (R4). These properties can be derived as necessary conditions for a homo-
morphism between ordered algebraic structures [19]. Therefore, we call the mapping,
which they characterize, a semimorphism. The mapping principle of semimorphism
between relevant sets in Fig. 6 seems to be as far as we can go toward homomorphism.
We also define the outer operations that occur in Fig. 6 (scalar times vector, matrix
times vector, etc.) by corresponding semimorphisms.

It is important to understand that the arithmetic operations for the product sets
defined by semimorphism are different in general from those which arise if only
elementary floating-point arithmetic is furnished. Semimorphism defines operations in
a subset N of a set M directly by making use of the operations in M. It makes a direct
link between an operation in M and its approximation in the subset N. For instance,
the operations in MCR (see Fig. 6) are directly defined by the operations in MC, and
not in a round about way via C,R,R, CR and MCR as it would have to be done by
using the elementary arithmetic only.

It is easy to see that repetition of semimorphism is again a semimorphism. The
operations in the leftmost element of every row in Fig. 6 are all well known. This allows
us to define operations in all sets of Fig. 6 by semimorphism. As already noted, the
outer operations in Fig. 6 are defined by semimorphism also.

The new operations now defined in all sets of Fig. 6 are of an accuracy which we
call maximal for all admissible roundings. This means that between the correct result of
an operation and its approximation in the subset no other element of the subset may be
found [19). Maximal accuracy guarantees the result to be within one unit in the last
place. This fundamental result follows readily from (RG), (R1) and (R2). For instance,
in the case of multiplication of two real or complex floating-point matrices a=(a,;)
and b=(b,;), (RG) means

”n
adb:= I:!(axb)=l:l( y a,,‘xbkj).
k=1

Here the rounding is defined componentwise. That is, there occurs only one single
rounding error in each component of the product matrix, even for very large n.
Compare this with the result that is obtained when only elementary floating-point
arithmetic is used. Earlier we saw that in such a case, 8 million roundings (each
equivalent to a loss of information) are performed in a multiplication of two 100 X 100
complex floating-point matrices. Compare this first to one rounding in each of only
10,000 components of the result. Compare this secondly with only a single rounding
altogether in terms of the space MCR where the multiplication is actually defined. This
number one is not a fiction since no matrix in MCR lies between the exact result and
the result computed by the new semimorphic operation. These new operations are not
only much more accurate, they are of a simpler form as well. Thus, they allow a simpler
error analysis of numerical algorithms, and they lead to more accurate error estimates
and bounds. All of this leads to a control of errors in computation by the computer
itself as we shall see.

4.1. Comments on the derivation of semimorphisms. We have noted that certain
essential properties of a semimorphism can be obtained as necessary conditions for a
homomorphism between ordered algebraic structures. There are still other possibilities
of deriving the properties of a semimorphism. They can be derived directly by consider-
ing special models of sets in Fig. 6. For instance, consider the mapping of the powerset
of the complex numbers PC into the intervals of the complex numbers /C. An interval
[a,b)] of two complex numbers a and b with a5 b is a rectangle in the complex plane.
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If we multiply two complex intervals 4 and B in the sense of the powerset operation

(see Fig. 7), we do not generally obtain an interval result, but a more arbitrary element
A X B of the powerset PC.

)
p7 b D]
eb.u] 1%,

F1G. 7. Multiplication of complex intervals.

We require that the result of an interval operation be an interval. The best we can
do is to map the powerset product A X B onto the least interval that contains it. In Fig.
7 this is shown as a rectangle fitting snugly around the set 4 X B. It is not difficult to
see that this mapping O: PC — JIC is a rounding having all of the properties, (R1,2,3,4)
and (RG) of a semimorphism. In the present case, the order relation is set inclusion €.
If the set A X B is already an interval, the rounding has no effect, i.e., (R1) holds. If we
enlarge the set 4 X B somewhat, this enlarges the least interval that includes it also, i.e.,
(R2) holds. (R3) is obvious and (R4) holds by reasons of symmetry. The result fulfills
(RG) viz, AR B=0(A X B), by construction.

As a second example, consider the basic pair R and R. If we add two floating-point
numbers a and b (row 1), then the correct sum c=a+ b is not in general a floating-point
number (Fig. 8). To obtain a floating-point number, we round the result into the
floating-point screen. Referring to Fig. 8 one can see that the process of rounding
fulfills (R1), (R2) and (R4). In this case, the order relation is <. The floating-point
operation is defined by (RG): aB@b=0 a +b).

c*0*b
-H-!—HJP. —t—t - R
0 eb DeceaolBe

F16. 8. Floating-point addition.

Simple intuitive pictures of the operations are not available for all pairs of relevant
spaces in Fig. 6. The computer structures in the third column of Fig. 6 are examples of
certain basic mathematical structures, the so-called ordered or weakly ordered ringoids
and vectoids. These basic structures are invariant under semimorphism. These concepts
and properties cannot be discussed here. It turns out that they are very useful for
deriving computer implementable algorithms for many operations [19].

In the case of the mapping of the real numbers into the floating-point numbers, it
is very useful to provide two additional roundings and the arithmetic operations
associated with them. These two roundings are the monotone directed roundings V and
A\. They are defined by (R1), (R2) and

(R3) Vagaand agAaforall ae M.
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The corresponding operations are defined by
a¥b:= V(asb) and alb:=A(asb)
forall g, beNandall s €{+,-,X,/}.

The monotone downwardly directed rounding V maps the entire interval between
two neighboring floating-point numbers onto the lower bound of this interval. The
monotone upwardly directed rounding A maps such an interval onto its upper bound.

4.2. Implementation of advanced arithmetic on computers. Having used semimor-
phism (property (RG)) to define all of the many floating-point arithmetic operations
associated with Fig. 6, we next deal with the implementation of these operators on
computers. We seek implementations by means of fast algorithms. The resulting meth-
ods are comparable in speed to implementations corresponding to operations based on
elementary computer arithmetic only.

At first sight it seems doubtful that formula (RG) can be implemented on com-
puters at all. To determine the approximation a © b, the result a+ b seems to be
called for. In general, a » b will not be representable and a fortiori not executable on
the computer.

Thus a+b is not available for implementation of @ @ b. We use isomorphic
relationships to deal with this problem. It can be shown that for the operations defined
by semimorphism (RG), there exist isomorphic computer executable representations in
all cases of Fig. 6. A detailed analysis of this question is given in [19]. For the
experienced reader, we offer some comments about this question.

Formula (RG) defines computer operations. While showing that there exist iso-
morphic representations of the computer representable subsets, only the structure of
these subsets and their operations in N defined by semimorphism may be used.
Therefore, a careful analysis of this structure has to made in advance. This structure is
different from the one in M with which mathematicians usually work.

The theory of computer arithmetic shows that all operations that occur in the third
column of Fig. 6 can be realized by a modular technique. This calls for a module where
the following fifteen operations are made available on the computer. These operations

(RG)

E B B 0 ®

v V. ¥V v V
A A A A& A

are sufficient for the computer implementation of all operations that occur in the third
column of Fig. 6. We shall comment on the remaining part of the implementation
question in §6. Here ® , « €{+, —, X, /) denotes the semimorphic operations de-
fined by (RG), using some particular monotone and antisymmetric rounding
(R1,R2,R4), such as rounding to the nearest number of the screen. Likewise ¥
respectively A, s €{+,—, X,/} denote the operations defined by (RG) and the
monotone downwardly respectively upwardly directed rounding. @, ¥, and A de-
note three scalar products with maximum accuracy. That is, if 2=(a,) and b=(b,) are
vectors of floating-point numbers, then

a®b:= O(a,xb,+a;xXby,+ :+- +a,xb,) foral O€{0,V,A}.
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The multiplication and addition signs on the right-hand side of the expression denote
exact multiplication and summation in the sense of real numbers. Comments on the
implementation of the operations B, 8, &, and I were already given in §2. It is useful
to provide the three scalar products, 8, ¥, A, in two different modes: the first one
adding to an initial value zero and the second one adding to the result of a preliminary
and unrounded scalar product. The second mode makes it possible to evaluate sums of
scalar products O(u-v+ x-y) or sums of matrix products (A4 - B+ C- D)with only one
rounding at the end of the computation. These modes of the scalar product are key
requirements for the defect correction process which is used in the self-validating
computational procedures which we shall treat in §5.

Of these 15 fundamental operations above, traditional numerical methods use only

- the four operations B, B, @, and @. Interval arithmetic employs the eight operations

V,V,¥,Vand A ,A,A,A . These eight operations are computer equivalents of the
operations for real intervals, i.c., of interval arithmetic. The recently proposed arith-
metic of the so-called IEEE standard offers 12 of these 15 fundamental operations:
B,V A, s€{+,-,X%,/}[10], [15]. Roughly speaking, interval arithmetic brings
guarantees into computation while the three scalar products deliver high accuracy.
These two features should not be confused. We return to these matters in §5.

4.3. Implementation of scalar products. Because of the importance of optimal
scalar products, we comment on their implementation on computers. Such implementa-
tion should be made by means of fast hardware routines. A black box technique is used
where the components a; and b,, i=1(1)n, are the input and the scalar products with
maximum accuracy @, V, A the output. See Fig. 9. The black box requires a local
store. The size of the local store depends on the data formats in use (number system
base, mantissa length and exponent range). In particular, the size is essentially indepen-
dent of the dimension n of the two vectors a=(a,) and b=(d,) to be multiplied.

a,—.b, n n
—— 0¥ a;xbl—pc=OY g,xb,

im) (L]

oein. V. AL

F16. 9. The black box for scalar products.

Access to the local store should be much faster than access to main storage. The full
product a,Xx b, is required. This mandates a mantissa of 2/ digits and an exponent
range 2el g e g 2e2. This reduces the problem to an implementation of the sum

O0Yc¢, 0O€{0V,h
i=1
on the computer. Here the ¢, i=1(1)n, denote floating-point numbers of 2/ digit
mantissas, i.e.,, ¢;€ R(b,2/,2¢l,2e2).

If one of the summands ¢, has exponent 0, its mantissa can be expressed in a
register of length 2/. If another summand has exponent 1, it can be expressed with
exponent 0, if the register provides further digits on the left and the mantissa is shifted
one place to the left. An exponent —1 in one of the summands requires a correspond-
ing shift to the right. The largest exponents in magnitude that may occur in the
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summands ¢, are 2e¢2 and 2|el}. This shows that all summands can be expressed (in a
type of fixed-point representation) in a register of length 2e2 + 2/+ 2|el| without loss of
information. If the register is built as an accumulator, all summands could even be
added without loss of information. In order to accommodate possible overflows, it is
convenient to provide a few, say ¢ more digits of base b on the left. In such an
accumulator, every such sum or scalar product can be added without loss of informa-
tion. As many as b' overflows may occur and be accounted for without loss of
information. In the worst case, presuming every sum causes an overflow, we can
accommodate sums with n < b' summands.

[T 22 | 201 21em1 ]

Fi1G. 10. Register for scalar product accumulation.

Actually the superlong accumulator may be replaced by a local store of size
d=t+2e2+2!/+2|el| and an adder of size approximately 3/. The summands are all of
length 2/. The local store is organized in words of length /. Since the summands are of
length 2/, they fit into a part of length 3/ of this Jocal store. This part of the store is
determined by the exponent of the summand. We load this part of the store into an
accumulator of length 3/. The summand mantissa is placed in a shift register and is
shifted to the correct position as determined by the exponent. Then the shift register
contents are added to the contents of the accumulator. Instead of the shift register in
Fig. 11, a cross point switch may be used to achieve a faster parallel implementation.

ey Y 1t 7 ¥ 1 1
local store

"I | " | 4 I | accumulator

@ shift register

2!

F1G. 11. Addition process for scalar products.

An addition into the accumulator may produce a carry. To accommodate carries,
we enlarge the accumulator on its left end by a few more digit positions. These
positions are filled with the corresponding digits of the local store. If not all of these
digits equal -1, they will accommodate a possible carry of the addition. Of course, it
is possible that all these additional digits are b—1. In this case, a loop has to be
provided that takes care of the carry and adds it to the next digits of the local store.
This loop may need to be traversed several times.

Other addition techniques or carry handling processes are possible. While the
addition process described was in terms of hardware registers, it can, of course, also be
simulated in software. For a more detailed discussion of these principles, see [8] [9],
[20]. Special purpose long accumulators have appeared earlier in computer design [22].

Independent of questions of accuracy, conventional computation of the scalar
product using elementary floating-point arithmetic only is a far slower proces