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Allmad. A new approach to the arithmetic of the digital computer is surveyed. 1be methodology for 
defining and implementing Boating-point arithmetic is descn"bed. Shoncomings of elementary floating-point 
arithmetic are revealed through sample problems. Tbc development of automatic computation with emphasis 
on the user control of errors is miiewed. The limitations of coziventional rule-of-thumb procedures for error 
control in scientific computation are demonstrated by means of examples. Computer arithmetic is extended 
so that the arithmetic operations in the linear spaces and their interval correspondents which are most 
commonly used in computation can be perfonned with maximum acc:uracy on digital computers. A nev.
fundamental computer operation, the scalar product. is introduced to develop this advanced computer 
arithmetic. 

A process of automatic error control called validation which delivers high accuracy with guarantees for 
scientific computations is described. Validation of computations for a large class of numerical problems is 
made poss1ble by advanced computer arithmetic. High accuracy is furnished by coupling the scalar product 
with the process of-defect comction. Guarantees and error bounds are obtained by interval techniques. This 
whole process establishes cenam numerical algorithms such as the evaluation of rational expressions as 
additional higher order arithmetic operations. The development of some programming languages in the 
context of computer arithmetic is reviewed. A collection of constructs in terms of which a source language 
may accommodate the methodology of computer arithmetic in a user-friendly mode is described. Finally the 
current state of implementation of the ideas discussed here is reviewed. 
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1. Introduction. Historically, computers were developed for scientific computa
tion. Today, the digital computer is a general purpose machine. It is used in such 
diverse areas as game playing, banking, reservation systems, traffic control, language 
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translation and inventory control. Because of this proliferation of computer usage, it is 
easy to overlook the central relationship between the computer and scientific computa
tion. 

There are two principal number systems used in a modern digital computer. These 
are integer systems (fixed-point systems) and floating-point systems. These number 
systems require different concepts of computer arithmetic. The integer system is to a 
large extent the system used in the area of nonscientific computation of the types 
enumerated above. As long as the values of computed results do not exceed the range 
of representable integers (i.e., as long as no overfiow and no noninteger result occurs), 
these computations are error-free. For this reason, the public image of the computer is 
one of a perfect compu~tjonal tool. 

Problems of scientific computation occur everywhere in the natural sciences and in 
technology. Examples of such problems are solving a differential equation or a system 
of algebraic equations. The floating-point system along with the operations of floating
point arithmetic are used as an approximate means for calculating solutions of such 
problems. Floating-point arithmetic confronts us with a seemingly paradoxical situa
tion. On one hand, many modern computers perform the basic floating-point opera
tions with high, even maximum accuracy. Nevertheless, the results of a scientific 
computation composed of several of these operations may be grossly incorrect. As an 
example of this consider the determination of the following sum. 

1050 + 812- 1050 + 1035 + 511 -1035 = 1323. 

By summing these numbers from left to right, most digital computers will return 0 
(zero) as the answer. This error comes about because the floating-point formats in these 
computers are unable to cope with the large digit range required for this calculation. 
The obvious solution for this particular example is to exchange the operands in an 
appropriate way. Such problem fixes are not always known. Even when they are 
known, they cannot always be applied for practical reasons. We shall give several 
additional examples of the failure of computers to deliver correct results later on. 

This article deals with floating-point arithmetic from a contemporary point of 
view. We shall show that recently developed concepts and methods of floating-point 
arithmetic provide a superior capability for modern digital computers with far-reaching 
consequences for scientific computation. For example, they go a long way toward 
eliminating errors of the type just described. There are other nonfloating-point arith
metic implementations for eliminating error in scientific computation. Examples of 
these are rational arithmetic, the use of multiple precisions and the full precision 
arithmetic found in such systems as SCRA TCHPAD and MACSYMA. We stress that 
our methodology is to enhance the practical high performance quality of floating-point 
with the safety which is provided with these other methods. 

We begin this development in §2 with a description of floating-point numbers and 
elementary floating-point arithmetic. The methodology for defining and implementing 
floating-point arithmetic is informally described. Shortcomings of elementary floating-
point arithmetic are revealed through sample problems. . 

In §3 we give a brief review of the development of automatic computation with 
emphasis on the user control of errors. R.ule-of-thumb procedures for error control 
employed in scientific computation are discussed~ Limitations of these procedures are 
demonstrated by means of examples. This motivates the necessity for the further 
development of computer arithmetic which follows. 

In §4 we extend computer arithmetic so that the arithmetic operations in the linear 
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spaces and their interval correspondents which are most commonly used in computa
tion can be performed with maximal accuracy on digitial computers. A new fundamen
tal computer operation, the scalar product, is introduced to develop this advanced 
computer arithmetic. 

In §S a process of automatic error control called validation is described. Validation 
delivers high accuracy with guarantees for scientific computations. Validation of com
putations for a large class of numerical problems is made possible by advanced 
computer arithmetic. High accuracy is furnished by coupling the scalar product with a 
special numerical process called defect correction. Guarantees and error bounds are 
obtained by interval techniques. This whole process establishes certain numerical algo
rithms such as the evaluation of rational expressions as additional higher order arith
metic operations. 

In §6 we review the development of some programming languages in the context of 
computer arithmetic. We describe a collection of constructs in terms of which a source 
language (such as FORTRAN or PASCAL) may accommodate the methodology of 
computer arithmetic in a user-friendly mode. For this, we organize computer arithmetic 
into three levels of implementation. The fll'St level, called basic arithmetic, deals with 
elementary computer arithmetic augmented by the scalar product. The second level is 
concerned with advanced computer arithmetic and its setting in linear spaces of compu
tation. The third level treats the validation process, including the capability of a source 
language to conveniently express the evaluation of expressions such as rational func
tions with maximum accuracy. 

In §7 the current state of implementation is reviewed. 
Many of the computational examples used in this article, have been taken from 

well-known collections [12), (25). We stress that this is not a review paper on computer 
arithmetic. It is a survey of the new approach to this subject which has been developed 
by ourselves and a number of collaborators in recent years. For this reason the large 
body of work which deals with computer arithmetic but which has not directly contrib
uted to this new approach is neither surveyed nor ref erred to. For convenience to the 
reader we do include a supplementary bibliography of important work in computer 
arithmetic outside of the new approach. 

We view as a high point of the new approach a coherency with which it addresses 
the subject matter. A simple but rigorous mathematical foundation for computer 
arithmetic is given. Applications and reduction to practice in scientific computation of 
these ideas is included. Finally, implementations in hardware and software are also 
described. We believe that new prospects for computation are likely as a result (16). 

2. Floating-point numbers and elementary ftoating-point arithmetic. The real num
bers can be defmed axiomatically as a conditionally complete linearly ordered field R. 
Independently of what this this abstract idea means, we are familiar with decimal 
expansions in terms of which real numbers may be represented. Decimal expansions 
employ a base b-= 10. In the case of a general base, such an expansion has the following 
form: 

-00 
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• • • -= • E d;b;, 
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where• e { +,-}and bis an integer greater than unity. The d;, is:::n(-1)-oo, are 
integers between zero and b-1. That is, 

(2) 0~d,~b-1 for all i=n(-l)-00. 
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For technical reasons stemming from the requirements of the uniqueness of representa
tions of the form (1 ), we also require that 

(3) d1 ~ b-2 for infinitely many i. 

In (1) bis called the base or the radix of the number system. The point between d0 and 
d_ 1 is called the radix point, i.e., the decimal point whenba:10. The d,, ;-n(-1)-oo, 
are called the digits ( of base b ). (When b • 2 the digits are called bits.) 

Arithmetic operations for these infinite b-expansions are defined by means of 
successive approximations. Let x and y be two real numbers. Truncation of the 
b-expansion of x and y · after the rth digit after the radix point gives the truncated 
expansions x, and y,, • respectively. For any of the arithmetic operations • E 

{ +, - , X, /}, the result· x, • y, can be calculated following well-known rules. The 
operation x • y for • E { +, - , x, /} for the full b-expansions is then defined as the 
limit of the sequence x, • y,, obtained by letting r go to infmity. Such a limiting 
process cannot be executed in a finite time. Thus for an approximation of the real 
numbers and operations, fioating-point numbers and floating-point operations are 
used. Such numbers are representable and such operations are implementable on a 
computer. 

A normalized floating-point number x (in sign-magnitude representation) is a real 
number x in the form 

:x= • mbe. 

Here • e { +, - } is the sign of the number (sign(x)), mis the mantissa (mant(x)), bis 
the base of the number system in use and e is the exponent ( exp( x )); b is an integer 
greater than unity. The exponent is an integer between two fvted integer bounds el, e2, 
and in gener~ el~ 0 ~ el. The mantissa m is of the form 

I 

m= L d(i]b- 1
• 

i•l 

The d(i) are the digits of the mantissa. They have the properties d[i)E {O, l,· • •, b-1} 
for all i= 1(1)/ and d[l]¢0. Without the condition, d[l):¢0, fioating-point numbers 
are said to be not nonnaJizect The set of norma]ittd floating-point numbers does not 
contain zero. For a unique representation of zero we assume that sign(O)= +, mant(O) 
-0.00 • • • 0 (/ zeros after the radix point) and exp(O)=el. A floating-point system 
depends on the constants b,I, el, and e2. We denote it by R=R(b,l,e1,e2). 

A fioating-point system R consists of a finite number of elements. They are 
equally spaced between successive powers of b and their negatives. This spacing 
changes at every power of b. Figure 1 shows a simple floating-point system R -
R(l, 3, -1, 2) consisting of 33 elements [12]. The successive powers of 2 are ± ¼, ± ½, 
± 1, ± 2. The ·noating-point system R has a greatest and a least element. Each number 
in R has to represent an entire interval of real numbers. For instance, in Fig. 1 the 
fioating-point number 3 might represent the indicated shaded interval. A floating-point 
system has the appearance of a screen placed over the real numbers. Indeed, the 
expression fioating-point screen is often used. 

Next we tum to the arithmetic operations +, -, x,/. These operations for real 
numbers are approximated by floating-point operations. U x and y are floating-point 
numbers, the exact point xx y itself is not usually a floating-point number of 
R(b,l,e1,e2) since the mantissa of xxy has 2/ digits. For related reasons, the exact 
sum x + y is also not usually a floating-point number. Since a computer must be able to 
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FIG. 1. A 1impk floating•point system. 

represent the results of its own operations, the result of a floating-point operation must 
be a floating-point number. The best we can do is to round the exact result into the 
floating-point screen and take the rounded version as the definition of the floating-point 
operation. 

If • is one of the exact operations, +, - , x, /, let Iii denote the corresponding 
floating-point operation. Then our choice of floating-point operations is expressed by 
the following mathematical formula. 

(RG) x Iii y:== □(x•y) forallx,yeR andall •e{+,-,x,/}. 

In (RG), □ is a mapping □: R-. R. □ is called a rounding if it has the following 
properties (Rl) and (R2). 

(RI) □x=x for all xeR, 

that is, the screen R is invariant under the mapping □. 

(R2) x~y~□x~□y for all x, yeR, 

that is, □ is monotonic on the real numbers. 
The three familiar roundings: to the nearest floating-point number, toward zero or 

away from zero have properties (RI) and (R2) and the following additional property. 

(R4) a(-.x)= -□x for all xeR. 

We impose this requirement of antisymmetry on many roundings. 
Later on we shall develop arithmetic techniques for supplying guarantees in float

ing-point computation. For these techniques, we need the monotone upwardly and the 
monotone downwardly directed roundings ~ and V. These two roundings are char
acterized by {Rl), (R2) and the additional property 

(R3) Vx~x and X'a1~X for all xeR. 

Thus, V rounds to the left and ~ rounds to the right. However, the roundings V and 
~ do not have the antisymmetry property {R4). 

All operations defmed by (RG) and a rounding with the properties (Rl)-(R3) 
produce results of maximum accuracy in a certain sense which is rounding dependent. 
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In particular, between the correct result (in the sense of real numbers) and the ap
proximate result x lil y (in the sense of the screen of floating-point numbers) no other 
floating-point number in the screen can be found.1 

The proof of this property follows easily from (RO), (Rl) and (Rl). 
Proof. Assume that u, v e R are two adjacent floating-point numbers with the 

property u:iax • y~v. Then from (Rl) we obtain au~C(x • y)~□v. Then (Rl) and 
(RO) deliver the desired result u ~ x lil y ~ v. a 

For convenience, we shall refer to the class of roundings which satisfy (Rl), (Rl), 
and (R4) along with the special roundings ~ and Vas admisst"ble roundings. We may 
summarize this discussion· by saying that admissible roundings generate muimally 
accurate floating-point arithmetic through use of (RO). 

Algorithms for implementation of the operations defined by (RO) and admissible 
roundings which are used on many computers can be found in the literature (15], (18], 
(19), (21 ). Here we review the main features of implementation. 

At first sight it seems to be doubtful that formula (RG) can be implemented on 
computers at all. In order to determine the approximation x l!l y, the exact but 
unknown result x • y which is in general neither computer specifiable nor computer 
representable seems to be required in (RG). It can be shown, however, that whenever 
x • y is not representable on the computer, it is sufficientto replace it by an appropriate 
and representable value x • y. The latter has the property D( x • y) = D( x • y) for all 
roundings in question. Then x • y can be used to defme x l!l y by means of the 
relations 

X I!] y = □( X • y) = □( X • y) for all X' y ER. 

There are fast algorithms for an implementation of (RG) on computers. These algo
rithms consist of the following ftve steps: 

1. Decomposition of x and y, i.e., separation of x and y into mantissa and 
exponent. If a floating-point number is not stored in a single word, this step is 
vacuous. 

2. Determination of x • y. It may be that .x • y:.:x • y. 
3. Normalization of x ~ y. x • y requires normalization if its mantissa has one or 

more zero digits following the radix point. Normalization consists of repeatedly 
shifting the mantissa left by one digit and decreasing the exponent by unity 
until all such zeros are eliminated. A single shift right may also be necessary in 
the case of addition. If the result of 2 is already nonnalizM. this step can be 
skipped. 

4. Rounding of x • y determines x liJ y == C'( x a y) = C'( x • y ). 
5. Composition, i.e., assembling of the mantissa and exponent of the result into a 

floating-point number. If floating-point numbers are not stored in single words, 
this step is vacuous. 

Figure 2 shows a graphical representation of these five steps in the form of a flow 
diagram. Since we deal with monotone roundings only, the normalization has to be 
performed before the rounding, since otherwise the monotonicity of the rounding is 
lost. Division can be executed in a manner that eliminates the need for normalization. 

1 We shall introduce the term maximal.CJ accuracy later to describe this concept of accuracy for a class of 
computer operations. since the accuracy depends on the rounding a. For convenience we drop the suffix 
( -C). since confusion will not occur. 
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FIG. 2. Rowdiag,amfortJ,,aritluMticopmllions DC: tl«omposition; A,S: addition and subtraction; M: 
multiplication; DV: division; N: nonnalization; R: roaouling; C: compo1ition. 

In the implementation of (RG) it is essential that x l!I y is produced by CJ(x • y) for 
all x,yeR. This can only be achieved if the accumulator that performs the operations 
is long enough. There are still many cornputers in the marketplace which for the 
execution of the floating-point operations use an accumulator which is only as long as 
the floating-point mantissa. We shall presently use a simple example to show that (RG) 
cannot be strictly realized with such an accumulator. While there are many tricky ways 
to implement floating-point arithmetic, there have emerged two standard approaches to 
this implementation which we shall discuss: the implementations by a so-called long 
accumulator and by a so-called short ac.cumulator. These two accumulators accommod
ate all admissible roundings of interest. The long accumulator is a computer register 
with one digit, which may be a binary digit,in front of the radix point and 2/+ 1 digits 
or base b after the radix point. See Fig. 3a. The shon accumulator is a computer 
register with one digit, which can be a binary digit, in front of the radix point and / + 2 
digits of base b plus one binary digit after the radix point. See Fig. 3b. 

(a) t""lt.====='======C::::===='====::.::!J 
I bit 2/ + I digits of base b 

(h) I I , I 
t , + 2 diJil• of ba,e h 

I bit 

11 

1 
I hit 

FIG. 3. (a) L«,g a«lllfflUlltor, (b) Mort a«llffllllator. 

An accumulator shoner than the short accumulator cannot always deliver correct 
and optimal results (in the sense which we have specified) for the floating-point 
operations. The bit on the left end of both accumulators is used for a possible overflow 
which may occur in case of addition. U the short accumulator is used for multiplication, 
the mantissa of the product bas to be built up from the right as illustrated by the 
following illustration. The bit on the right end of the shon accumulator is needed in the 
cases of the roundings I::,. and V. 
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panial product or length I + I 
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We now give a simple example which shows that any reduction of the length of the 
accumulator causes a failure to deliver the optimal results we have specified. Take /=4 
and the decimal system b= 10. We show that an accumulator of /+ 1 = 5 digits fol
lowed by an additional binary digit d after the point is not capable of delivering correct 
results as defmed by (RG) in all cases. Let .x=0.1000X106, y= -0.5001 x101, so that 
.x + y = 0.099994999 x 106

• If we now apply the rounding to the nearest floating-point 
number (to four decimal digits), we obtain: .x Bl y== 0.9999 x 105• However execution 
in an accumulator of S decimal digits leads to a different result, namely 0.1000 x 106• 

In practice, the choice between the short and long accumulators depends on side 
considerations such as the technology employed and fine points in the design. However, 
a fundamental perception of numerical analysis is that advanced optimal methods of 
computer arithmetic (which we shall develop below) require the accumulation of the 
full double length product of two floating-point numbers. Such double length products 
cannot be efficiently prpduced by the short accumulator.1bis consideration gives very 
high priority to the choice of the long accumulator for the execution of floating-point 
operations. Indeed use of the short accumulator would require a complicated simula
tion process for accommodating the double length products needed for the approach to 
high accuracy computer arithmetic in product spaces which we develop below. 

Although this requirement for the double length product is well known in numeri
cal computation. many processors continue to be built without this feature, some even 
adhering to a currently fashionable (albeit dubious) claim of furnishing high accuracy 
in computation. 

Let us return to our earlier point that although floating-point operations with 
maximum accuracy can be implemented and realized in computers, results of scientific 
computations composed of these operations may be grossly incorrect. All mathematical 
statements depend critically on the premises upon which they are builL Arithmetic 
expressions or numerical algorithms are not exempted from this requiremenL If com
promises are made such as the replacement of full precision addition or the replace
ment of the full set of real numbers by a finite set of floating-point numbers, we are 
obliged to accept compromises in the result of evaluating that expression or executing 
that numerical algorithm. Perhaps what is surprising is that the discrepancies in the 
results can be catastrophically large even though the compromises in the premises are 
quite small. We illustrate this phenomenon with a few examples. 
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l. Cmcellation. Consider a floating-point system with the base b = 10 and a 
mantissa of S digits. We compute xBy, where 

x-=0.10005x105 and y= -0.99973x104 • 

Using the shon accumulator, we get 

0.1000S X 105 -0.99973 X 104 -= 0.1000S00 X 105 

-0.0999730 X 105 

0.0000770 X 105 

nonnaUzed: 0.7700000 x 101 

rounded: 0.77000 x 101 

That is, x By-= 0. 77000 x 101. The occurrence of leading z.ero digits after the decimal 
point is called cancellation. The process of normalization then fills in zeros at the right 
end of the result. The rounding has no effect, i.e., the result is error free even in the 
sense of an exact subtraction of real numbers. 

Now suppose that each of the floating-point numbers x and y are themselves 
rounded results of products of two floating-point numbers, i.e., x = CJ( x 1 xx 2 ) and 
y=D(y1 Xy2). The products x1 Xx2 and y1 Xy2 which have mantissas of double length 
are taken to be 

X1 X X2 = 0.10005482410 X 105, 

Y1 Xy2=0.09997342213 X 105• 

Rounding gives the values of x and y used previously. Subtracting, we now get 

X1 Xx2-Y1 Xy2=0.10005482410Xl0 5 

-0.09997342213 X 105 

0.00008140197 X 105 

nonna)ized: 0.8140197 x 101 

That is, X1 Xx2-Y1 Xy2-=0.8140197 X 101
. 

Comparison with the result xBy=x11!Jx2By1eJy2 obtained earlier shows that no 
digits of the mantissas coincide. The results agree only in magnitude. Cancellation 
occurs whenever two nearly equal numbers are subtracted. Although the single subtrac
tion step is error free, cancellation is very dangerous if the data themselves are already 
rounded. 

Cancellation is the cause for many failures in floating-point computation. Note 
that the result D(x1 Xx2-y1 Xy2 ) prescribed by our methods (compare (RG) above) 
can be obtained if the products x1 Xx2 and y1 Xy2 are computed to their full double 
length and then subtracted using the long accumulator. Indeed, in this case we get 

a(xl Xx2-Y1 Xy2)-=0.81402 X 101 
t 

an optimal result since no floating-point number lies between it and the exact result. 
Cancellation may also occur over a long chain ol additions/subtractions. In this case, 
one speaks ol global or catastrophic cancellation. Long computations tend to conceal 
the occurrence ol global cancellation as the following example shows. 
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2. Global c:anceUadon. Using Taylor series, the following formula for the exponen
tial is derived. 

CCI zV 

ez= L ,. 
u-o "· 

1bis series is absolutely convergent for every value of z in the complex plane. For z 
real and negative the terms in the series alternate in sign. In this case the magnitude of 
the error committed by truncating such an alternating series is less than the magnitude 
of the first term neglected. Let us use this series to calculate the value of the exponen
tial for z - - 20 and employing a floating-point system with 6 decimal digits in the 
mantissa. In Fig. 4, we display a list of the terms of the series for v == 1(1 )62. The 
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computed value of the sum of these terms is 181.496. The summation was stopped at 
this point because the last s;nrnrnaud is less than 10-7 times the sum to the indicated 
terms. Stopping at this point is conventional numerical practice, since according to the 
error property of the alternating series already noted, further summing ought not to 
influence the computed resulL However, the correct result is 0.00000000206115 .... We 
have drawn a vertical line in the display of the summands between the 8th and 9th 
places after the decimal poinL As we now see from the correct results, all digits of every 
summand to the left of this line should cancel. 

The correct answer is of the order 10-9 while the computed floating-point result is 
of the order 103• More cannot be expected of a result computed with 6 decimal places. 

• To see this note that the largest summand corresponds to vs::::20, and that it has the 
value 43099600. This summand cannot be correct to more than 6 places. Thus, the first 
two places to the left of the decimal point of this summand have no meaning, and any 
sum involving them can likewise have no meaning in these two places. Then the global 
cancellation to the left to the indicated vertical line can likewise not occur in these two 
places except by the sheerest accident. In fact, the required cancellation does not occur 
in the computation, and so, the leading digits of the computed sum indicated are 
incorrect. The reader should try to compute the solution of the following examples 
{taken from [25]) with his pocket calculator, personal computer or by use of a mainframe 
by himself. The correct result for each of the problems is given, and in most cases, the 
answer obtained by a computer using a floating-point system with a 14 hexadecimal 
digit mantissa (i.e., base 16 or approximately 17 decimal digits) is also given. 

3. Scalar products. Calculate the scalar product of two vectors A and B with five 
elements each: 

SP=Al XB1+A2XB2+A3XB3+A4XB4+ASXBS 

for 
Al = 2.718281828, 
A2 = - 3.141592654, 
...43 = 1.414213562, 
A4 = 0.S772156649, 
AS = 0.3010299957, 

The correct value of the scalar product is 

Bl = 1486.2497, 
B2 = 878366.9879, 
B3 = - 22.37492, 
B4 = 4773714.647, 
BS = 0.000185049. 

- 1.006S7107 X 10-11 • 

The computer delivers 

+0.335 ... x10-9, 

so that even the sign is incorrect. Note that no vector element has more than 10 decimal 
digits. 

4. Aritbmedc expressions. Evaluate the arithmetic expression 

(1682XY"+ 3X3 + 29XY2 - 2X5+ 832)/107751 

for 

x-192119201 and Y=3S675640. 

The correct answer is 1783. The computer delivers 

-S.385 ... x1022 . 
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S. Polynomial evaluation. Evaluate the polynomial 

P{X)=8118X4 -11482X3+X2 +5741X-2030 
for 

X=0.707107. 
The correct value of the polynomial is 

- l.91527325270 ... X 10-11 • 

The computer delivers 

!(X)== -1.9781509763S611891 X 10-11• 

6. Linear ~ Solve the set of equations 

64919121X-159018721Y = 1, 
41869520.SX -102558961Y = 0. 

Expressions to evaluate X and Y exactly are 

Y= (41869520.5/64919121)/(1025S8961-41869520.5 X 159018721/6491912), 

X = (102558961/41869520.S) Y. 

The correct results are 

X=205117922, 

The computer delivers 

Y = 83739041. 

X=0.987372352669808606 X 10-1, Y = 0.403093099594116210 X 10- 1. 

What result does your computer deliver? 

7. Extrapolation. The following values are given 

X 5201477 5201478 5201479 
Y 99999 100000 100001. 

Obviously the three values fit on a line. Therefore, a best linear approximation L(x)= 
mx + b must yield L(5201480)= 100002. Formulas for the computation of m and b are 

X1 x Yl+X2x Y2+X3x Y3-½(Xl+X2+X3)(Yl+ Y2+ Y3) 
m 2 ' 

Xl+X22 +X32-t(Xl+X2+X3) 

b=½(Yl+ Y2+ Y3)-; (Xl+X2+X3). 

Evaluate m and b using these formulas and determine L(5201480). The correct results 
are m == 1, b = - S10418 and L(5201480}-= 100002. 

8. Differentiation. Consider the function 

49701-4923 
/(l)m: 49701 2-97991+4830. 

An approximation for the value of the second derivative /"(I) of a function /(1) may 
be computed from the expression 

/(1-h)-2/(1)+/(1+h) 
hl 
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with some small value for h. Determine an approximation of /"(1) with the help of the 
above expression for h = 10-•, h-== 10-5, h = 10-8• The correct results are: 

Approximation with h :c: 10-4 : 70. 78819 ... . 

Approximation with h-10- 5: 93.76790 ... . 

Approximation with h == 10-8: 94.00000 ... . 

The exact value for the derivative is f"(l )as 94. The computer delivers: 

Approximation with h-10-•: 70.7804197738837856 .... 

Approximation with h-= 10-s: 93.12785680180180116S4 .... 

Approximation with h = 10-8: 30695.44110S3317471 .... 

9. Expression evaluadon. Compute the value of the expression 

83521y8 + 578x2y 4
- 2x4 + 2x6

- x 8 

for x = 94786S7 and y = 2298912. The correct value is 

-179689877047297 .0. 

What is the result obtained on a pocket calculator? on a large computer'? 

for 

10. Complex division. Compute the quotient of two complex numbers 

(a+ib)/(x+iy) 

a= 1254027132096, 
b = 886731088897, 

X = 886731088897, 
y = 627013S66048. 

The correct value of the quotient is 

1.41421. .. + i8.47861. .. X 1025 • 

These examples show that computers supplied with the best possible implementation of 
the four arithmetic operations +, - , x, / can deliver arbitrarily bad results in prob
lems of the simplest form. One may imagine the possible implications of incorrect 
results in computation for more serious purposes such as power grids, reactor manage
ment, weapon systems, aircraft design and control, vehicle stability and so on. 

The reader should not be discouraged if his or her attempts to solve these prob
lems did not produce the correct answer. Most computers in the marketplace today can 
do no better. The examples make a bad case for floating-point arithmetic. How is it 
that the digital computer has for many years been used very successfully in numerical 
computation? Numerical analysts have developed great skills and sophisticated meth
ods to detect such errors and to maneuver around them. These specialii.ed techniques 
require extensive study and much experience to be used. Moreover their use adds 
considerable time and expense to the computational process. Not every computer user 
is sophisticated and experienced. The inexpert user is often unable to detect such errors 
and is usually at a loss of how to proceed when such errors occur. 

In the following sections we show how floating-point arithmetic bas been advanced 
so that the digital computer can automatically control and rectify many errors inherent 
in floating-point computation. Indeed, a new capability called validation is possible in 
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many cases, whereby the computer gives a result and an absolute assertion of its 
accuracy. In this manner, the computer becomes a precise scientific instrument rather 
than an experimental tool. 

3. Historic remarks and motivation. The Roman number system is hardly one 
upon which to build a computing machine. What is surprising is that this ancient 
system was in widespread use in Europe up to the 15th c.entury. It was supplanted by 
the Arabic number system, itseH a system dating from antiquity, in other parts of the 
world. Once the Arabic number system became widely adopted in Western Europe, 
mechanical calculating devices of all sorts began to appear. Better known examples of 
these devices are associated with the names of Blaise Pascal and Gottfried Leibniz. 
Pascal is credited with ~ving built and used an adding machine. A little later Leibniz 
invented the principle of the stepping cylinder (StaffelwaJze) by means of which it was 
possible to perform all four operations of arithmetic directly. This device, in one form 
or another, could be found in mechanical calculators up to the present day. 

The realiz.ation that the intellectual process of computation could be implemented 
by mechanical devices was a major fundamental discovery. 1bis discovery created an 
industry which developed further principles and concepts of mechanical computation, 
as well as devices by means of which they were implemented. The descendants of these 
venerable firms could be found pursuing the same enterprise well into the 20th century. 
Some of them are currently in the electronic computer business. 

With the invention of the logarithm by John Napier and others, the appearance of 
the slide rule soon followed. 1bis was an essential step in the development of analog 
computing devices. Although not as widely spread as the digital computer, analog 
devices still exist today in sophisticated electronic and mechanical form. 

The relatively slow speed of mechanical computing devices supported an interac
tive mode of computation whereby the user monitored the result of each operation as it 
was produced. Thus, error control and significance of results could be dealt with by the 
user's understanding of what was going on. Many of us who are familiar with the use of 
a slide rule or a product calculator have performed this kind of error control of a 
machine aided computation. A rule of thumb had it that in this mode of interactive 
computation, a person could perform about 1000 reliable computations per day. 1bis 
translates into approximately 0.03 operations per second for a nine hour day. 

In the period 1920-1940, a breakthrough in computation was made. 1bis was the 
idea of the stored program computer in which the program itself could be stored in the 
computer and operated upon by the computer as if it were data. 1bis breakthrough is 
credited variously to Alan Turin& Emil Post, John Mauchly and John von Neumann. 
Combining this with the technological electronic developments of the 20th century led 
to the rust generation of modern digital computers. These computers provided a 
gigantic gain in computer power over their mechanical predecessors. In the early fifties, 
these computers were able to execute on the order of 30 ftoating-point operations per 
second which, in fact, were implemented as subroutine calls. 1bis was a thousandfold 
gain in speed. The modem computer age is dated from this period. 

Early electronic computers often represented their data as fixed-point numbers. 
This imposed a scaling requiremenL Problems had to be pre-processed by the user so 
that they could be accommodated by this fixed-point number representation. 1bis 
pre-processing proved to be an enormous burden. It was the introduction of the 
floating-point representation in computation in the early fifties which largely eliminated 
this burden. But it turned out that the floating-point representation made the error 
control problem even more difficulL There was no longer any hope for error control of 
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computations by the traditional interactive methods used in the cases of mechanical 
desk calculators or the slide rule. 

The enormous gain in speed and the introduction of Ooating-point mandated the 
development of methods for more systematic control of errors in computation. Such 
methods, that were developed in those days and are still used today, are based on 
estimates of the error of each individual arithmetic operation. These ideas and concepts 
trace back to Cornelius LanC2'.0S and Wallace Givens and were heavily exploited by 
James H. Wilkinson and others. These methods are highly sophisticated. They led to 
the two techniques of error analysis commonly called forward and backward error 
analysis. Both are analytic methods. Since the computer is able to execute a large 
number of operations, a large number of error estimates have to be made and their 
propagation through the whole algorithm has to be studied. For instance, multiplica• 
tion of two complex matrices of 100 rows and columns requires about 8 million such 
estimates. The propagation of these estimates in a complicated algorithm requires a 
rather complicated analysis which can only be performed in special types of problems. 
Even then, the results are usually theoretical and of limited practical value. Indeed, 
even sophisticated users tend to avoid this approach. 

Thus, we find that other methods for judging the quality of results delivered by a 
computation have arisen. We find many computers equipped with both single and 
double precision and sometimes even with extended capabilities of precision in arith• 
metic. The scientific computer user usually adopts one of the following techniques for 
judging the quality of his output. 

1. He computes a residual, i.e., he inserts the computed answer into the problem 
expression and evaluates the remainder, hoping that a small remainder indi
cates a good solution. 

2. He repeats his calculation in double or extended precison, checking for agree
ment, hoping that good agreement indicates a good solution. 

3. He reruns his problem with slightly changed input data, checking the variation 
in the results. Small variation is interpreted as stability in the computational 
process and hopefully a good solution. 

These approaches frequendy give good indication of the quality of a computation. 
However, they may also be completely unreliable. 

The following pair of equations (12) shows how unreliable method 1 may be. 

0.780X + 0.563Y = 0.217, 
0.913X +0.659Y=0.254. 

Two different approximate solutions are proposed. 

and x-o.999, Y- -1.001, 
X-0.341, Y-= -0.087. 

Which one is better? The usual check is to substitute them into the set of linear 
equations. We find the following residuals: 

0.780X + O.S63Y-0.217-= -0.001243, 
and 0.913X +0.659Y -0.254 = -0.001S72, 

0.780X+0.563Y-0.217-= -0.000001, 
0.913X + 0.659Y - 0.254-= 0. 

It seems evident that the second approximation is a better solution, since it makes the 
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residuals much smaller, ( -0.000001,0.) compared to (-0.001243, -0.001S72). How
ever, the true solution is X 1111 l, Y= -1, as one can verify easily. Hence, the first 
approximation ( X - 0.999, Y- -1.001) is much closer to the true solution. 

The second traditional approach for checking the accuracy of a computed result is 
to recalculate, each time increasing the number of digits with which computations are 
performed. Thus, we find most computers equipped with single and double precision 
and sometime even extended precison capabilities in arithmetic. The idea underlying 
this second approach is closely related to the definition of the operations for the real 
numbers through limiting processes which we discussed previously. 

The result of such an operation was defined as being the limit of the result 
obtained by operating ·on truncated parts of the expansions representing the operands. 
However, the analogy. is only superficial. Indeed this approach only displaces the 
problem, but does not solve it in principle. It is evident that the examples displayed 
above have counterparts which demonstrate equivalent deficiencies in the double or 
extended precision computation of any computer. For our simple example, 

1050 + 812-1050 + 1055 + 511 -1055 -1323, 

almost all digital computers will return zero, whether using single, double or extended 
precision. In general, the user does not know how many digits are needed to obtain a 
correct answer. To show that the third method is also unreliable, consider the two linear 
equations 

100000x + 99999y = b1, 

99999x + 99998 y = b2 • 

The following are computed values of x and y for different choices of b1 and b2. 

b1 = 200000, X = 200000, 
b2 =200000, y= -200000, 

b1 =200010, 
b2 =200010, 

x= 199990, 
y= -199990, 

x= 200010, 
y= -200010. 

This seemingly regular behavior of the solution misleads us to the conclusion that the 
problem is stable and that the computer solutions are reliable. To see just how badly 
wrong this conclusion is, consider the totality of all solutions of the linear system of 
equations corresponding to all possible choices of b1 and b2 in the following range 
which contains the values of b1 and b2 already pre.1Cribed. 

199990 :ii b1 ~ 200010, 
199990 :S b2 ~ 200010. 

The totality of solutions which comspondingly arise are 

-1 800 000 ~ X ~ 2 200 000, 
-2 200 000 :iY ~ 1 800 000. 

Moreover these bounds are sharp. This set contains the solution x = y = 1, which is 
obtained for b1 == 199999, b2-199997. '4 t 
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In numerical mathematics, the so-called condition number is often used to calibrate 
the sensitivity of a problem to input data. A large condition number characterizes a 
highly sensitive problem, while a small condition number characterizes a stable prob• 
lem. Expressions for condition numbers are developed for many classes of numerical 
problems. For most problems computation of the condition number is as difficult as 
computation of the solution of the problem itself. For such problems employing the 
condition number is not a practical method for dealing with the accuracy of a com
puted solution. For some linear matrix problems, so-called cheap condition estimators 
are known to be useful for error estimation if some care is taken (111, (27), (28). 

Recall now our earlier remark that the appearance of the first electronic computers 
in the early fifties, i.e., the step into the computer age, meant a thousandfold gain in 
·speed (103). The actual computer revolution, however, happened afterwards. The fastest 
computers today are able to execute of the order of 300 million (3 x 108) floating-point 
operations in a second. 

This is a gain in speed by a factor of 107 over the electronic computers of the early 
fifties. Compared with a person working with a mechanical desk calculator or pocket 
calculator of today, this is a gain in speed of the order of 1010• See Fig. 5. To help grasp 
the significance of this factor, consider the following illustration. The human popula
tion is about S x 109• So, if we equip every man, woman and child with a mechanical 
desk calculator or an electronic pocket calculator, they could, while they are all work
ing, perform as many operations as only one of today's faster computers. 

GN•ATIC.S 
"'· .COIi) 1o'0 

1c,8 

1c,I 

lol 

10° 
101 

19ll T-

10·• 

FIG. S. The incr«ue in computing speed. 

We now return to our consideration of the error analysis of the computational 
process. The theoretical methods of backward or forward error analysis discussed 
earlier translate into 300 million error estimates having to be carried out for each 
second of a computational process. Additionally, the propagation of these errors through 
a complicated algorithm has to be studied. These techniques are no longer in balance 
with the extremely enlarged speeds of todays computers. On the other band, the more 
pragmatic methods 1, 2 and 3 were all crude and finally unreliable. 

In other words, when the capability of computers was relatively modest, the 
calculation could somehow be conuolled by the user. The users were small in number, 
they were relatively sophisticated and they could hand-tune their computations. Today, 
problems which are dealt with have become enormously large and ramified, and the 
body of computer users comes with members of every degree of experience and 
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sophistication. It is simply no longer possible to expect computers to be controlled by 
hands-on methods. There remains no alternative but to furnish the compuler with the 
capability of control and validation of the computational process. 

The advanced theory of computer arithmetic (18), (19) offers an approach to this 
question. As motivation for advanced computer arithmetic, consider a system of linear 
equations with coefficients that are representable in the computer without rounding 
errors. Then all information needed for the correct solution of the problem is present in 
the computer. If the problem is ill-conditioned, it may happen (as we saw earlier by 
means of simple examples) that the computed result has little to do with the correct 
solution of the problem. This means that information which was originally present in 
the computer bas been lost by computation. The roundings are responsible for it. The 
act of rounding which accompanies each floating-point operation typically discards 
some digits. We may say that each rounding means a loss of information. 

Then the guiding principle of an advanced computer arithmetic and e"or analysis is 
to reduce the number of roundings in any particular computational process. A central 
question remains: Which roundings can be omitted and which cannot? 

The basic feature of advanced computer arithmetic is to augment the operator set 
HI , B, ml , IZI for floating point numbers by another operation 9 which turns out to be 
fundamental. m is the floating-point implementation of the inner or dot product ( or 
scalar product) of two vectors. Consistent with the implementation requirement of 
maximum accuracy for the four basic operations, the new scalar product must be 
implemented with maximum accuracy as well, i.e., with only one rounding. So, if 
a=(a1,a2,· ··,a,.) and b==(b1,b2,- • ·, b,.) are two n-dimensional floating-point vectors, 
the scalar product must be defined by 

a 9 b :== □( t a;Xb,) =□(a1 Xb1 +a2 Xb2 + • • • +anxb,,) 
,-1 

for all vectors and all relevant dimensions. 
Augmenting the floating-point operator set in this manner goes a long way toward 

controlling the loss of information inherent to floating-point calculations. The theory of 
computer arithmetic shows that with the augmented set of five floating-point opera
tions, all arithmetic operations of the most customary linear spaces of computation can 
be performed with maximum accuracy. These spaces consist of the floating-point 
representations of the real and complex numbers, of the vectors and matrices over these 
representations and of the interval spaces over all of these. 

After the four basic operations EB, B, Iii and IZI, the linear space operations, such 
as the product of two matrices or the product of a matrix by a vector, are the most 
fundamental operations in numerical analysis. The augmented set of five basic 
floating-point operations, &I, B, mJ, IZJ and m is sufficient for the execution with 
maximum accuracy of these linear space operations. 

Since these linear space operations are expressible in terms of scalar products, the 
five basic operations are in a sense necessary as well. We may expect that this enlarged 
set of maximally accurate computer operations, consisting of linear space operations 
and their interval counterparts will lead to better results in numerical computations. 
The enlarged set of operations support yet another fundamental feature essential for 
high accuracy in computation. The availability of exact scalar products, as well as 
matrix and matrix-vector operations with maximum accuracy, make it possible to apply 
a special mathematical technique in many cases, the so-called defect correction process. 
1bis process is often of scalar product type. Information that has already been lost by 
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rounding effects during an initial computation can often be recovered by defect correc
tion. Such corrections can be made to manmiu floating-point accuracy, and in princi
ple, they can provide arbitrary accuracy. The corresponding interval operations permit 
guarantees for these highly accurate results to be obtained also. Combining these two 
techniques within a fixed-point iteration framework, allows us to append a so-called 
verification or validation pl'OeeU to the computation. This process supplies a set of 
bounds for the solution to the problem being computed. Moreover, the computer 
delivers a proof of the existence and uniqueness of the solution of the problem within 
the computed bounds by verifying the hypotheses of an appropriate fixed-point theo
rem. We refer to the bounds and the existence proof as computer generated guarantees 
. for the problem, simply as guaran~. 

For particularly difficult problems, the validation process may not terminate 
within a specified time limit or iteration number limiL In this case, a warning is given 
to the user. Modification of the solution method is then in order. 

These general techniques can be applied to fundamental problems of linear alge
bra, such as solving linear systems of equations, matrix inversion, polynomial or 
arithmetic expression evaluation, eigenvalue-eigenvector computation and linear opti
mization. These problems are usually solved with maximum accuracy and guarantees. 
This capability for these problems can be interpreted as providing additional high order 
arithmetic operations. Experience bas shown that these methods work well even for 
highly ill-conditioned problems. For profoundJy ill-conditioned problems, the system 
may fail to produce a result. In this case, notification is supplied to the user. 

The reader should contrast this methodology with customary numerical practice, 
which only makes use of elementary computer arithmetic, that is, the four basic 
operations El, B, m and rz:I. Results, which are supplied, are often good, but they can 
also be bad, even arbitrarily so. Usually no information about bounds, existence or 
uniqueness is provided by the conventional computation. This concludes our brief 
preview and motivation of advanced computer arithmetic. A more detailed discussion is 
given in the chapters which follow. 

4. Advanced computer arithmetic. In this chapter, we deal with computer arith
metic in higher mathematical spaces (product spaces) such as spaces of complex 
numbers, of real and complex vectors, of real and complex matrices, of real and 
complex intervals, as well as the spaces of real and complex interval vectors and 
interval matrices. Arithmetic operations in computer representable subsets of these 
spaces are defmed by a general mathematical mapping principle which is called a 
semimorphism. These arithmetic operations are distinctly different from the customary 
ones which are based on elementary computer arithmetic. 

To make the differences dear, we begin with a brief review of the customary 
operations. Computers built for scientific computation are customarily equipped with 
the four floating-point operations 8, B, liJ and rz:I. Sometimes the eight additional 
corresponding operations which employ the monotone downwardJy directed roundings 
(~, V, V, V/) and the monotone upwardly directed roundings (A,A,A,/A) are also 
provided. In the higher mathematical spaces, which we listed in the previous paragraph, 
arithmetic operations are performed by evaluating well-known mathematical formulas 
for them in terms of the given elementary floating-point operations (four or twelve in 
number, as the case may be). 

For instance, if a - a1 + ia2 and /J = /J1 + i/J2 are two complex floating-point num-
bers or a-= (a

1
,a

2
, ···,a,.) and b-=(b

1
,b

2
, • • ·, bn) are two vectors of floating-point 
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num~ the following product formulas are well known. 

a X/J=a1 X/J1 -a2 X/J2 +i(a1 X/J2 +a2 X/J1), 

a·b=a1 Xb1 +a2Xb2+ • • • +anxb,.. 

Their computer approximations are now defmed by rewriting these formulas in terms 
of the given floating-point operations, i.e., 

«mi /J-= «1 mJ /J1 B «2ml /J2 + i( «1 Iii /J2 IE «2 lil/J1 ), 

a liJ /j-a1lilb11Ea2lilb2EB • • • EBanmJbn. 

In §2 we showed, by means of simple examples, that the computational error associated 
with these expressions. ,;nay become quite large and that this error depends critically on 
the given data. 

Let us now make a tabulation of these higher spaces of computation. In addition 
to the integers, numerical algorithms are usually defined in the space (set) R of real 
numbers and vectors YR and matrices MR over the real numbers. The corresponding 
complex spaces C, YC and MC also occur. All these spaces are ordered with respect to 
the order relation ~ . In all product sets (for us all sets other than R ), the order relation 
is defined componentwise. The order relation is a partial order. Using the order relation 
;:s , the notion of intervals can be defmed in all these spaces. If a~ b, an interval [ a, b] 
is the set of all elements between them. That is [ a, b] := { x I a~ x ~ b}. If we denote the 
set of intervals over an ordered set { M, ~} by IM, we obtain the spaces IR, IVR, 
/MR and IC, IVC, IMC. See the second colu~ in Fig. 6. 

1 

PR 
PVR 
PMR 

PC :> 
PVC :> 
PMC :> 

2 
R 

VR 
MR 

JR 
IVR 
/MR 

C 
vc 

MC 

JC 
/VC 
IMC 

3 
:> R 
:> VR 
:> MR 

:> IR 
:> IVR 
:> IMR 

:> CR 
:> VCR 
:> MCR 

:> ICR 
:> /VCR 
:> IMCR 

F10. 6. Tobi~ of ,pat:a ocauring in nummcal computations. 

Most algorithms in numerical analysis are defined in one or several of these spaces. 
However, these algorithms cannot usually be executed in these spaces. For execution, 
we use computers. A computer contains only a subsystem R of the real numbers. R is 
the set of computer reals or floating-point numbers. (Sometimes several such systems of 
differing precision are available.) Vectors ( n-tuples), matrices ( n x n-tuples), complexifi
cations (pairs), vectors and matrices of such pairs, as well as the corresponding sets of 
intervals, can be defined in terms of R. Doing so, we obtain the spaces YR, MR, JR, 
IYR, IMR, CR, YCR, MCR, /CR, IYCR and IMCR, which are listed in the third 
column of Fig. 6. We indicate set-subset relations in Fig. 6 by means of inclusion 
symbol=>. 

Having described the sets listed in the third column of Fig. 6, we tum to the 
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arithmetic operations to be defined for these sets. Our definition of these operations is 
essentially different from the conventional one. These operations are supposed to 
approximate the operations in the corresponding sets listed in the second column. The 
operations are well known in any of the spaces R, YR, MR, C, VC and MC of the 
second column. The powerset PM of any set M is defined as being the set of all subsets 
of M. The powersets of the sets just enumerated are listed in the fmt column of Fig. 6. 
Now if • is any operation defined in M, then a corresponding operation • can be 
defined in the powerset PM as follows. 

A• B :a: {a• blaEA AbeB} for all A, Be PM. 

This definition extends every operation of M into the corresponding powerset PM. 
Summarizing, we can now say that the operations in the sets listed in the leftmost 
element of every row in Fig. 6 are always known. Of course, all of these operations are 
ideal mathematical operations. We now use these ideal operations to define operations 
in the subsets on the right-hand side of Fig. 6, row by row, using a general mapping 
principle. 

Let M denote any set of Fig. 6 in which the operations are known and N the 
subset on its right in the same row. For each • in M, we defme an operation Iii in N 
as follows: 

(RG) a IE b :== a(a • b) for all a, beN and for all •. 

Here □: M ➔ N denotes a mapping with the following properties. 

(Rl) 
(R2) 
(R4) 

□a==a for all aeN 
a:;b:o□a:;□b for all a, beM 
□(-a)= -□a for all aeM 

(rounding). 
(monotonicity). 
(antisymmetry). 

In the case of the interval sets of Fig. 6, the order relation ~ means set inclusion £; . In 
this case, we also require that the rounding □ has the property 

(R3) a~□a for all aeM ( upwardly directed). 

Property (R3) is referred to as the property of isotony of the rounding □. In mathemati
cal settings, a set with operations is sometimes considered where, in fact, the operations 
are seemingly not executable. Mathematicians then usually look for another set with 
executable operations and try to arrange an isomorphism between the two sets and 
corresponding operations. Isomorphism is the strongest relevant mathematical mapping 
principle. It has the property that the inverse image of the result of a computation in 
the image set is the result that would have been obtained if the computation could have 
been executed in the original set. 

Since the operations in the leftmost element of each row of Fig. 6 are not computer 
implementable, we have a situation of the type just described. However, in Fig. 6 
set-subset pairs occur which are of different cardinality, and isomorphisms cannot be 
established between such sets. 

A somewhat weaker mathematical mapping principle is that of a homomorphism. 
It can be shown by simple examples (19) or by a theorem that even homomorphisms 
cannot be established between the relevant sets in Fig. 6. 

Now we can try to weaken the mapping properties of a homomorphism still 
further. Doing so, we reach a mapping correspondence with our properties (RG), (Rl), 
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(R2), (R3), (R4). These properties can be derived as necessary conditions for a homo
morphism between ordered algebraic structures (19). Therefore, we call the mapping, 
which they characterize, a semimorphism. The mapping principle of semimorphism 
between relevant sets in Fig. 6 seems to be as far as we can go toward homomorphism. 
We also define the outer operations that occur in Fig. 6 (scalar times vector, matrix 
times vector, etc.) by corresponding semimorphisms. 

It is important to understand that the arithmetic operations for the product sets 
defined by semimorphism are different in general from those which arise if only 
elementary floating-point arithmetic is furnished. Semimorphism defmes operations in 
a subset N of a set M directly by making use of the operations in M. It makes a direct 
link between an operation in Mand its approximation in the subset N. For instance, 
the operations in MCR (see Fig. 6) are directly defined by the operations in MC, and 
not in a round about way via C,R,R, CR and MCR as it would have to be done by 
using the elementary arithmetic only. 

It is easy to see that repetition of semi.morphism is again a semimorphism. The 
operations in the leftmost element of every row in Fig. 6 are all well known. This allows 
us to define operations in all sets of Fig. 6 by semimorphism. As already noted, the 
outer operations in Fig. 6 are defmed by semimorphism also. 

The new operations now defined in all sets of Fig. 6 are of an accuracy which we 
call maximal for all admissible roundings. 'Ibis means that between the correct result of 
an operation and its approximation in the subset no other element of the subset may be 
found (19). Maximal accuracy guarantees the result to be within one unit in the last 
place. This fundamental result follows readily from (RO), (RI) and (R2). For instance, 
in the case of multiplication of two real or complex floating-point matrices a=(a;i) 
and b=(b;i), (RO) means 

a□b:= D(axb):c□( r, a;1,Xb1c1). 
k-1 

Here the rounding is defmed componentwise. That is, there occurs only one single 
rounding error in each component of the product matrix, even for very large n. 
Compare this with the result that is obtained when only elementary floating-point 
arithmetic is used. Earlier we saw that in such a case, 8 million roundings ( each 
equivalent to a loss of information) are performed in a multiplication of two 100 x 100 
complex floating-point matrices. Compare this first to one rounding in each of only 
10,000 components of the resulL Compare this secondly with only a single rounding 
altogether in terms of the space MCR where the multiplication is actually defmed. 'Ibis 
number one is not a fiction since no matrix in MCR lies between the exact result and 
the result computed by the new semimorphic operation. These new operations are not 
only much more accurate, they are of a simpler form as well. Thus, they allow a simpler 
error analysis of numerical algorithms, and they lead to more accurate error estimates 
and bounds. All of this leads to a control of errors in computation by the computer 
itself as we shall see. 

4.1. Comments on tbe derivation of semfmorpldsms. We have noted that certain 
essential properties of a semimorphism can be obtained as necessary conditions for a 
homomorphism between ordered algebraic structures. There are still other possibilities 
of deriving the properties of a semimorphism. They can be derived directly by consider
ing special models of sets in Fig. 6. For instance, consider the mapping of the powerset 
of the complex numbers PC into the intervals of the complex numbers IC. An interval 
( a, b] of two complex numbers a and b with a:;; b is a rectangle in the complex plane. 
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If we multiply two complex intervals A and B in the sense of the powerset operation 
(see Fig. 7), we do not generally obtain an interval result, but a more arbitrary element 
A x B of the powerset PC. 

C 

~ 

Flo. 7. Multiplimlion of complt:x imnvals. 

We require that the result of an interval operation be an interval. The best we can 
do is to map the powerset product A x B onto the least interval that contains it. In Fig. 
7 this is shown as a rectangle fitting snugly around the set A x B. It is not difficult to 
see that this mapping □: PC ➔ JC is a rounding having all of the properties, (Rl, 2, 3, 4) 
and (RG) of a semimorphism. In the present case, the order relation is set inclusion ~ . 
If the set A x B is already an interval, the rounding has no effect, i.e., (RI) holds. If we 
enlarge the set A x B somewhat, this enlarges the least interval that includes it also, i.e., 
(R2) holds. (R3) is obvious and (R4) holds by reasons of symmetry. The result fulfills 
(RG) viz, A l!JB=□(A XB), by construction. 

As a second example, consider the basic pair R and R. If we add two floating-point 
numbers a and b (row 1), then the correct sum c= a+ bis not in general a floating-point 
number (Fig. 8). To obtain a floating-point number, we round the result into the 
floating-point screen. Referring to Fig. 8 one can see that the process of rounding 
fulfills (RI), (R2) and (R4). In this case, the order relation is ~ . The floating-point 
operation is defmed by (RG): a&.Jb=□(a+b). 

c•a•b 

-+-I -+1--11 ....... , +1-1!~1-+-1 _..,, ........ ~---•• R 
O • b Cc•aEh, 

FIG. 8. Floating-point addition. 

Simple intuitive pictures of the operations are not available for all pairs of relevant 
spaces in Fig. 6. The computer structures in the third column of Fig. 6 are examples of 
certain basic mathematical structures, the ·so-called ordered or weakly ordered ringoids 
and vectoids. These basic structures are invariant under semimorphism. These concepts 
and properties cannot be discussed here. It turns out that they are very useful for 
deriving computer implementable algorithms for many operations [19). 

In the case of the mapping of the real numbers into the floating-point numbers, it 
is very useful to provide two additional roundings and the arithmetic operations 
associated with them. These two roundings are the monotone directed roundings V and 
fl. They are defmed by (Rl), (R2) and 

(R3) '\la~a and a~Lla for all aeM. 
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The corresponding operations are defined by 

a~b:= V(a•b) and a&b:-~(a•b) 

for all a, be N and all • e { + , - , x , /} . 
(RG) 

The monotone downwardly directed rounding V maps the entire interval between 
two neighboring Boating-point numbers onto the lower bound of this interval. The 
monotone upwardly directed rounding ~ maps such an interval onto its upper bound. 

4.2. Implementation of advanced aridtmetic on computers. Having used semimor
pbism (property (RG)) to define all of the many floating-point arithmetic operations 
associated with Fig. 6, we next deal with the implementation of these operators on 
computers. We seek implementations by means of fast algorithms. The resulting meth
ods are comparable in speed to implementations corresponding to operations based on 
elementary computer arithmetic only. 

At fll'St sight it seems doubtful that formula (RG) can be implemented on com
puters at all. To determine the approximation a Iii b, the result a • b seems to be 
called for. In general, a• b will not be representable and a fortiori not executable on 
the computer. 

Thus a• b is not available for implementation of a m b. We use isomorphic 
relationships to deal with this problem. It can be shown that for the operations defined 
by semimorpbism (RG), there exist isomorphic computer executable representations in 
all cases of Fig. 6. A detailed analysis of this question is given in (19]. For the 
experienced reader, we offer some comments about this question. 

Formula (RG) defmes computer operations. While showing that there exist iso
morphic representations of the computer representable subsets, only the structure of 
these subsets and their operations in N defined by semimorpbism may be used. 
Therefore, a careful analysis of this structure has to made in advance. This structure is 
different from the one in M with which mathematicians usually work. 

The theory of computer arithmetic shows that all operations that occur in the third 
column of Fig. 6 can be realized by a modular technique. This calls for a module where 
the following fifteen operations are made available on the computer. These operations 

1±1 B [!) IZI GJ 

w V ~ VJ w 
A A A IA A 

are sufficient for the computer implementation of all operations that occur in the third 
column of Fig. 6. We shall comment on the remaining part of the implementation 
question in §6. Here riJ , • e { +, - , x, /) denotes the semimorphic operations de
fmed by (RG), using some particular monotone and antisymmetric rounding 
(Rl, Rl, R4), such as rounding to the nearest number of the screen. Likewise T 
respectively &. , • e { +, - , x, /) denote the operations defined by (RG) and the 
monotone downwardly respectively upwardly directed rounding. m , ~, and A de
note three scalar products with maximum accuracy. That is, if a=(a;) and b-{b;) are 
vectors of floating-point numbers, then 

a0b:= O(a1 Xb1+a2 xb2 + ••• +a,.xb,.) for all Oe{□,V,A}. 
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The multiplication and addition signs on the right-hand side of the expression denote 
exact multiplication and summation in the sense of real numbers. Comments on the 
implementation of the operations m, B, m, and l1J were alre.ady given in §2. It is useful 
to provide the three scalar products, El , ~, A, in two different modes: the first one 
adding to an initial value zero and the second one adding to the result of a preliminary 
and unrounded scalar product The second mode makes it possible to evaluate sums of 
scalar products C( u • v+ x ·y) or sums of matrix products C.:.A • B + C • D)with only one 
rounding at the end of the computation. These modes of the scalar product are key 
requirements °for the defect correction process which is used in the self-validating 
computational procedures which we shall treat in §5. 

Of these 15 fundamental operations above, traditional numerical methods use only 
• thefour operations 1±1, B, Iii, and IZJ. Interval arithmetic employs the eight operations 

W, V, V, Vl and A, A, A ,IA . These eight operations are computer equivalents of the 
operations for real intervals, i.e., of interval arithmetic. The recently proposed arith
metic of the so-called IEEE standard offers 12 of these 15 fundamental operations: 
liJ , l7, A , • e { +, - , x, /} [10), [15]. Roughly speaking, interval arithmetic brings 
guarantees into computation while the three scalar products deliver high accuracy. 
These two features should not be confused. We return to these matters in §5. 

4.3. Implementation of scalar products. Because of the importance of optimal 
scalar products, we comment on their implementation on computers. Such implementa
tion should be made by means of fast hardware routines. A black box technique is used 
where the components a; and b;, i=l(l)n, are the input and the scalar products with 
maximum accuracy El , W, & the output. See Fig. 9. The black box requires a local 
store. The size of the local store depends on the data formats in use (number system 
base, mantissa length and exponent range). In particular, the siz.e is essentially indepen
dent of the dimension n of the two vectors a=(a;) and b=(b;) to be multiplied. 

a;,b, n 

--.. Oia;xb; 
;.1 

n 

c • 0 I a;><b;, 
i•I 

FIG. 9. The black box for scalar products. 

Access to the local store should be much faster than access to main storage. The full 
product a, x b; is required. This mandates a mantissa of 2/ digits and an exponent 
range lel ~ e ~ 2e2. This reduces the problem to an implementation of the sum 

n 

0 I: C;, Oe{□,V,6} 
i•l 

on the computer. Here the c,, i=l(l)n, denote Boating-point numbers of 2/ digit 
mantissas, i.e., c;eR(b,2J,2e1,2e2). 

If one of the summands c, has exponent 0, its mantissa can be expressed in a 
register of length 2/. H another summand has exponent 1, it can be expressed with 
exponent 0, if the register provides further digits on the left and the mantissa is shifted 
one place to the left. An exponent -1 in one of the summands requires a correspond
ing shift to the right. The largest exponents in magnitude that may occur in the 
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summands c, are 2e2 and 21ell. This shows that all summands can be expressed (in a 
type of fixed-point representation) in a register of length 2e 2 + 21 + 21ell without loss of 
information. If the register is built as an accumulator, all summands could even be 
added without loss of information. In order to accommodate possible overflows, it is 
convenient to provide a few, say t more digits of base b on the left In such an 
accumulator, every such sum or scalar product can be added without loss of informa
tion. As many as b' overflows may occur and be accounted for without loss of 
information. In the worst case, presuming every sum causes an overflow, we can 
accommodate sums with n ~ b' summands. 

1t1 2, I 21~11 

Actually the superlong accumulator may be replaced by a local store of size 
d== t+ 2e2 + 21+ 21ell and an adder of size approximately 3/. The summands are all of 
length 2/. The local store is organized in words of length /. Since the summands are of 
length 2/, they fit into a part of length 3/ of this local store. This part of the store is 
determined by the exponent of the summand. We load this part of the store into an 
accumulator of length 3/. The summand mantissa is placed in a shift register and is 
shifted to the correct position as determined by the exponent. Then the shift register 
contents are added to the contents of the accumulator. Instead of the shift register in 
Fig. 11, a cross point switch may be used to achieve a faster parallel implementation. 

1, 1 I 
local store 

1...,11_1 _11 ___ , ___ 1 accumulator 

.,_.....,.~..,....,..,_I 1hift register 

21 

FIG. 11. Addition proceu for scalar prodtJCts. 

An addition into the accumulator may produce a carry. To accommodate carries, 
we enlarge the accumulator on its left end by a few more digit positions. These 
positions are filled with the corresponding digits of the local store. If not all of these 
digits equal b-1, they will accommodate a possible carry of the addition. Of course, it 
is possible that all the.1e additional digits are b-1. In this case, a loop has to be 
provided that takes care of the cany and adds it to the next digits of the local store. 
This loop may need to be traversed several times. 

Other addition techniques or carry handling processes are possible. While the 
addition process described was in terms of hardware registers, it can, of course, also be 
simulated in software. For a more detailed discussion of these principles, see (8) (9), 
(20). Special purpose long accumulators have appeared earlier in computer design (22). 

Independent of questions of accuracy, conventional computation of the scalar 
product using elementary floating-point arithmetic only is a far slower process than the 
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one just described. Some reasons for this are: 
1. The optimal scalar product algorithm can locate a subsequent operand simply 

• by increasing the current address, thus avoiding complicated index calculations 
or optimimtion techniques. 

2. Some data transports to and from the stack and some range checks are avoided. 
3. The average shift of the summands into proper position in the shift register of 

length 3/ is shorter than in the case of a standard addition technique. 
4. The main step in a scalar product computation: s :-= s +ax b contains one 

addition and one rounding. This rounding, as well as a normalization step, are 
avoided by the original algorithm. 

Figure 12 illustrates the steps of development of arithmetic as a basis for scientific 
COJllPUtation. The rust three levels, Eementary Computer Arithmetic, Basic Computer 
Arithmetic and Advanced Computer Arithmetic have now been discussed. In the next 
chapter we deal with the extension of ideas and capability to so-called Higher Order 
Computer Arithmetic, namely to the fundamental algorithms of numerical analysis, 
that is to matrix inversion, linear system solving and so forth. 

ADVANCD) C'ONPUR& .dJTKWETIC 

~-.._ ........ _,_...,__.o.,n-
IGGHU OIIOU COIO'UTla umuanc 
...,,...__.._s,-.. ............ 
...... ----·---· 

SCIENTIFIC COMPUTA TJON 

DEYELOl'l,CENT OF COMPUTD .urnocE11C 

DOADENING 1HE IA5I: FOa SCIEN11PIC COMPU1'Aff01'1 

FIG.12 

S. Extemion to self-validating method.I. In §4, we noted that computer realization 
of the five basic operations ®, e, ®, 0, G) for each of three different roundings 
0 e {a, V, ~} suffices for an implementation of the arithmetic operations of maximal 
accuracy in the commonly used linear spaces of scientific computation and their 
interval correspondents. In this chapter we indicate how these operations are applied to 
fundamental problems in linear algebra such as linear systems of equations, 
eigenvalue-eigenvector computation and optimization problems. Such problems can 
usually be solved with high, even maximum accuracy, even in severely ill-conditioned 
cases. Furnishing the solution of these problems with maximal accuracy allows the 
process of their solution to be interpreted as additional high order arithmetic opera
tions. 
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Roughly speaking, it is the scalar products with maximal accuracy together with 
other techniques which deliver the high accuracy of these higher order operations, while 
it is interval arithmetic which delivers guarantees. Taken together, these features pro
vide the basis for an automatic validation process for the computation being per
formed. Interval arithmetic has been used in numerical mathematics for about 25 years, 
and highly sophisticated methods have been developed [l], (2), [22), [23), [S10). An 
extensive list of references to interval mathematics can be found in [2]. Interval arith
metic has often been criticized since its naive use may deliver bounds which are 
unreasonably large, and thus, do not contain much information about the solution of 
the problem. 1bis • has been interpreted as a failure of interval arithmetic for delivering 
high accuracy. 1bis criticism is fundamentally misdirected. Interval arithmetic is the 
only computational tool so far available that incorporates guarantees as part of the 
basic computational process. It is very useful for this purpose. High accuracy is not 
intrinsic to interval arithmetic. High accuracy is obtained by use of the process of 
residual correction. There are well-known limitations to residual correction. It is our 
use of the optimal scalar product which makes residual correction effective. It is the 
combination of these two features, namely, interval arithmetic and residual correction 
with the optimal scalar product which delivers guarantees with high or even maximum 
accuracy. 

We give our discussion of an extension of advanced computer arithmetic to 
fundamental problems of numerical analysis with an informal description of how these 
methods work. As a first step, an initial approximation to the solution of the problem is 
computed by some favored method such as Gaussian elimination in the case of a linear 
system. The quality of this initial guess is occasionally critical for the success of the 
next step. A second and basic step is to cast the problem to be solved into an iterative 
solution process. The iteration is pursued in the so-called residual correction mode. 
This is a a well-known computational technique in which, at each iterative step, the 
residual or defect in the current approximation is computed and used to modify the 
approximation. Here the precise computer arithmetic and in particular, the precise 
scalar products come into play. As the quality of the approximation iteratively im
proves and the values of the defects or residuals diminishcorrespondingly, further 
correction by this process becomes critical. To refme something already of high quality 
requires the use of more highly refined attributes. The accurate approximation can only 
be made more accurate with an ever more accurate calculation of the residual. Less 
figuratively, we note that as the correction process continues, the successive residuals 
tend toward 1.ero. Thus, computation of the residual is characterized by an increasing 
degree of cancellation. Then to achieve any particular number of leading digits in the 
determination of a residual requires increasingly more accuracy in its computation. The 
relative accuracy needed does, in fact, depend on the problem, and for some problems, 
it can be quite large. In technical terms, ill-conditioning of a problem grades the degree 
of accuracy needed in residual computation for correction of the current iterate. 1bis is 
the point where the optimal scalar product plays a critical role. By using optimal scalar 
products in the adding mode, residuals may be calculated to all relevant figures for 
correction. 1bis is the basic process, by means of which high accuracy is obtained. By 
contrast, if only elementary floating-point arithmetic is used, any given precision 
(single, double, extended) in which this calculation might be performed, could prove to 
be inadequate for correction of the iterate beyond a certain poinL This point is quite 
vulnerable to the ill-condition of the problem, the latter in general unknown. 

How do we obtain verified results? This is where interval arithmetic, along with the 
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optimal dot products~ and A with the directed roundings (upwards and downwards) 
and their interval equivalents play their critical role. At some point in the iteration, the 
mode of computation is switched, so that the data types being employed become 
intervals. 1bis point is chosen adaptively using a criterion which detects saturation in 
the pointwise process. Thereafter, the residual correction process is continued using 
interval arithmetic induding optimal scalar products. In the traditional use of naive 
interval arithmetic, this could be a counter-productive step, since as is well known, 
naive interval arithmetic often swells the size of the intervals which it handles. 

Here a new and imponant feature is brought into play. The numerical process of 
.residual correction is a contracting process in general. This mathematical term means 
that the distance between any two data is reduced by each step of the process. Indeed, 
it is this property which makes the iterative methods of numerical analysis work. We 
now play this contraction against the tendency of the swelling of the interval arithmetic. 
Here once again, use is made of the optimal (interval) scalar product. In practice the 
contraction is able to dominate. The resulting process is a residual correction using 
interval arithmetic where the intervals contract. 

Finally, a last tactic is brought into play. When one of the intervals occurring in 
the iteration process is enclosed within its predecessor interval, the Brouwer fixed point 
theorem is used for validation. This theorem asserts that when a mapping, such as our 
iteration process with intervals, results in an interval which lies within the predecessor 
interval, then that mapping has a fixed point within the interval. 

• The fixed point statement is equivalent to the existence of the solution. 
• The contraction of the mapping provides uniqueness of the solution . 
• The fmal interval presents a set of bounds for the solution. These bounds, if 

inadequately sharp, may be improved by that very same iterative correction 
process employing the optimal scalar products already used. Improvement to 
arbitrary accuracy is possible in principle. 

The mapping property of contraction may he difficult to verify. In practice, 
therefore, other criteria for establishing uniqueness are used. One such property which 
is moreover computer verifiable is retraction, i.e., strict inclusion of a proper lineariza
tion of the mapping. 

The process that establishes the three properties, displayed above, is called verifi
cation or validation of the result of the computation. It establishes the existence and 
uniqueness of the solution of the problem within the computed bounds. (Such methods 
are sometimes also called £-methods (corresponding to the German words for ex
istence, uniqueness and containment: Existenz, Eindeutigkeit, Einschliessung)). We 
stress that the validation is an automatic process performed by the computer. The 
computer is not per se proving existence and uniqueness of a solution. It is simply 
being used to verify the hypotheses of a theorem which furnishes this proof. Methods 
that provide results of high accuracy with guarantees are available for many standard 
problems of numerical analysis, such as: linear systems of equations, matrix inversion, 
eigenvalue-eigenvector computation, polynomial and arithmetic expression evaluation, 
optimi7.ation problems, nonlinear systems of equations and even for problems with 
differential equations (2), (13), (14), (16), (24), (26). 

In certain extremely ill-conditioned problems, the system may fail to produce a 
validation. In this case, the user is notified. A modification of the solution method is in 
order. All this is in sharp contrast to conventional numerical packages where results 
may be supplied in such cases which deviate arbitrarily from the exact results without a 
proper warning. 
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S.1. lmpredse data. Advanced computer arithmetic, as we describe it here, in
cludes the operations for intervals over all the commonly used linear spaces of compu
tation. Thus, scientific problems which themselves furnish data of limited accuracy are 
conveniently accommodated. Input data, which are not precisely known may be speci
fied as an interval. In such a case, the results are intervals which are verified to contain 
all potential results which can arise from data values within the specified intervals. The 
results, of course, cannot be made more accurate than the data allow them to be, but 
verified results with guarantees, i.e., validation can generally be supplied. 

The fact that computers can be used to provide such qualitative statements as the 
existence and uniqueness of the solution of a particular problem within the computed 
bounds by means qf arithmetic computation opens a new dimension for scientific 
computation. Such a computer is no longer merely a fast calculating tool, but a 
scientific instrument of mathematics. Moreover this tool is user friendly to the naive as 
well as the sophisticated user. We stress once more that these results can more or less be 
easily obtained if the 1S fundamental operations displayed in §4 are made available on 
the computer. The availability of interval operations is essential for obtaining these 
results. 

We now illustrate the three mapping principles of (a) inclusion, (b) contraction 
and (c) retraction, resp. which are relevant for our treatment. See Fig. 13a, b, c, resp. 

a) lnc/mion b) Contraction 

Fio.13. 

c) R~traclion 

5.2. Continuom mappinp. Let /: Rn-+ Rn be a continuous mapping. Let A be a 
nonempty, convex, closed and bounded subset of Rn. Let /(A)=B. 

(a) Inclusion: B~A establishes existence of a faed point (Brouwer fixed point 
theorem). 

(b) Contraction: Let /(a)=a
1

, /(b)=b
1

. If, for all a, beA, the distance d(a
1

,b
1

) 

~ kd( a, b) with k < 1, then uniqueness is established. To see this, suppose x and y are 
fixed points. Then d(x,y)~kd(x,y). Then (1-k)d(x,y)~0 so that d(x,y)==O. This 
implies that x-y. 

(c) Retraction: Fig. 13c displays the case where B is a retraction of A, that is, 
where B lies inside of A and away from the boundary of A. Retraction implies 
uniqueness of the fixed point in the case of a linear mapping. To see this, suppose there 
are two fixed points x and y of the linear mapping /. Then for any scalar A, 
/(x+Ay)-/(x)+A/(y)-x+Ay. Then x+Ay is a fixed point also. Now A can be 
chosen such that x+Ay is on the boundary of A. This contradicts the retraction 
property. 

If A and Bare intervals, A-[a
1
,a

2
] and B•[b

1
,b

2
] of any dimension, then (a) 

and (c) are easily testable. Indeed: 

(a) • a1:iib1 Ab2:;;a2 , 

(c) • a1 <b1 Ab2 <a2 • 
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Contraction (b) is a property of the mapping which must be known to the user. In the 
rare case of certain special mappings, the computer itself can verify the contraction. 

For the specialist, we give a more formal but still brief description of the iteration 
and verification proceu described above. We choose the simple case of solving a system 
of linear equations of the form 

(1) 

Let the exact solution be denoted by .i and an approximate solution by i. Let e-= i - .i 
be the error and denote the defect of the approximation by d := b-A.i. With the 
optimal scalar product in the adding mode, d can be computed with full ( or at least to 
muirnal) accuracy. Then • 

(2) 

and therefore, 

(3) 

b-A.i=O, 

Ae=d. 

If we now compute an interval inclusion E for the error e, we obtain an inclusion for 
the solution of (1): 

e-=i-.iEE•iE.i+E. 

Now we consider the interval iteration scheme 

(4) En+l :-= (/-RA)En+Rd 

with any matrix R. Here I denotes the identity matrix. A theorem of interval analysis 
(2) tells us that (4) converges for every initial interval vector £0 to the unique fixed 
point of (4) if and only if the spectral radius p(II-RAD< 1. Here we use the absolute 
value of a matrix to denote the matrix of the absolute values of its components. En+ 1 is 
a retraction of E,. if 

(5) 

where a£" denotes the boundary of E,., dist(X, Y) denotes the distance between X and 
Y. Retraction is easy to guarantee computationally. If (5) holds, another theorem states 
that R and A are not singular and E,.+ 1 contains the solution of (3): eeEn+i· Thus, 
the interval .i + E,.+ 1 contains the unique solution of (1 ). 

In practice R is chosen as an approximate inverse of A. Then p( 11 - RAD< 1 
usually holds in practice. Now the swting value E0 for the iteration (4) is obtained by 
adding a very smaJJ interval to the approximation .i of .i. In most cases in practice the 
retraction (5) occurs after one iteration. Only rarely have more iterations been needed 
to produce (5), and then only two or three. (4) is very sensitive to roundinp. Therefore, 
the optimal scalar product in the adding mode is used during the computation of (4). 
1be whole process delivers a bigb]y accurate set of computed bounds for the solution 
and simultaneously proves the existence and uniqueneu of the solution within these 
computed bounds. 

(2) and ( 4) are suited to reveal the differences between the use of elementary and 
advanced computer arithmetic. Let us first assume that elementary computer arithmetic 
is used: H x in (2) is already a good approximation of .i, then Ai is close to b and the 
subtraction b-A.i causes cancellation. 1bat is, only a few digits or possibly no digit of 
d can be computed correctly. For an imprecisely known d, determination of the error e 
from (3) is worthless. 
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Similarly, if in (4) R is a good approximation of ...4-1, then RA is close to/ and 
the subtraction I - RA causes cancellation. In such a case the iteration matrix in ( 4) is 
known only approximately so that the computed result of the iteration ( 4) is worthless. 

On the other hand, by using advanced computer arithmetic with optimal scalar 
products, the difference b-A.i in (2) and the iteration matrix J - RA in (4) can be 
computed to full accuracy. 1bis makes the defect comction process work very well. 

In (17) it is shown that validation is provided for a linear system in at most 6 times 
the work for solving the linear system itself by Gaussian elimination. This theoretical 
bound has proved to be pessimistic in practice, since, as we have already noted, rarely 
is more than one iteration required to produce the validation. Sparse matrices may be 
accommodated by these methods without increasing storage requirements. With effec
tive implementation the speed of these methods has been made comparable to any 
alternate method and this includes the validation which is not typically provided by 
alternate methods. 

Linear systems of equations play a central role for the whole of numerical analysis. 
Many problems can be reduced to linear systems. Even nonlinear systems of equations 
are solved approximately through the use of linear systems. 

Accurate function evaluation is indispensible for many algorithms. Then as the last 
step of our treatment of "high order" arithmetic operations, we show how polynomials 
and then arbitruy arithmetic expressions can be evaluated with high accuracy (the 
validation step included) (4). We proceed by reducing these questions to solving either 
linear systems of equations or to solving nonlinear systems of equations of special form. 

S.J. Expression evaluation. As a model situation, consider the following poly
nomial of degree three. 

p(t) =a3t
3 + a2t 2+a1t+a0 = (( a3t+ o2)t +a1)t+ a0 , 

where o0 , o1, o2, a 3 and t are given floating-point numbers. The expression on the 
right-hand side is called the Homer scheme. Evaluation of p( t) by means of the 
Homer scheme proceeds in the following steps: 

X1 s=a3 X1 =a3 

X2=x1t+02 -tx1 +x2 =a2 

X3=X2t+o1 or -IX2+X3 =a1 

x4=x3t+o0 tx3+x4 =ao. 

This is a system of linear equations Ax= b with a lower triangular matrix, where 

A-1-1 _; i i), .x-= 1~:1 and b= 1=:). 
0 0 -t 1 x, o0 

x4 is the value of the polynomial. Then a highly accurate solution of the linear system 
delivers the value of the polynomial with high accuracy. The extension to higher order 
polynomials is obvious. 1bis procedure generates highly accurate evaluation of poly
nomials, even of very high order. 

Let us now consider general arithmetic expressions and begin with the example 

(o+b)c-!!.. 
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Here a, b, c, d and e are floating-point numbers. Evaluation of this expression can be 
perf ~rmed in the following steps. 

X1 -=a, 

X2 -=x1 +b, 
X3 -cx2, 
x .. -d, 

exs -x .. , 
%6 -x3-X5. 

Once again we obtain a linear system of equations with a lower triangular matrix. 
There are arithmetic expressions which lead to a nonlinear system of equations. 

For example, the expression 

(a+b)(c+d) 

leads to the nonlinear system of equations 

x1=a, 
X2=X1 +b, 
X3=C, 

x4 =x3 +d, 
X5=X2X4. 

All such systems are of a special lower triangular form. They can be solved directly, or 
they can be transferred into linear systems by an automatic algebraic transformation 
process (4). Solution techniques which employ optimal scalar products and defect 
correction methods can then be used. In this way the value of an arithmetic expression 
with high accuracy is obtained. The extension of computation with high accuracy from 
dyadic operations (even in the product spaces of Fig. 6) to arbitrary arithmetic expres
sions is fundamental. Even though the operations are implemented optimally, in com
putations involving several such operations errors may accumulate and become large. 
With optimal scalar products and defect correction methods, we can reduce the loss of 
information in the evaluation of polyadic operations of arithmetic expressions to only 
one single rounding. 

6. Connection with programming languages. We had earlier noted that the stored 
program was a major intellectual breakthrough in the development of computing 
machinery. The program is the means by which the computer user lays out the work 
that he expects the computer to perform. In a sense he writes the requirements of his 
computation in a basic language which the computer can process, interpret and execute. 
This basic computer language is usually called assembly language, and it is composed 
of primitive orders to the computer. Examples of these are fetch a number from 
memory and place it in an accumulator or add the contents of one register to the 
contenis of another one. Programming a computer in assembly language has always 
been a refmed art usually reserved to the expert computer user. 

As computers increased in size, speed and availability, the burden of programming 
in assembly language became excessive for many computer users. There was a need to 
communicate directions to the computer in simpler languages which described the 
computation to be performed in more natural terms. The computer user could use one 
language and the computer another language. The computer itself must execute the 
translation between these languages, and it does so by means of a translation program 
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called a compiler. This concept and its effective implementation was another intellect
ual breakthrough in the development of computers. The language used by the computer 
user is called a higher level language, an application oriented language or a source 
programming language. Although there were simultaneous developments of this source 
language-compilation-assembly language idea, the first widely successful such de
velopment was the source language called FORTRAN and its associated compiler in 
the fifties. Since that period many other source languages have been developed such as 
ALGOL~, COBOL, PASCAL, APL and ADA. The development of such program
ming systems has become as important as the development of computing machinery 
itself. 

Programming lanpages have evolved greatly in the last thirty years providing ever 
increasing amounts of capability and congeniality to the programmer. From the point 
of view of scientific computation these languages have always been concerned with the 
expression of mathematical algorithms and the communication to the computer of the 
procedure for executing these algorithms. The original FORTRAN allowed the user to 
write mathematical formulas comprised of variables and the basic arithmetic opera
tions, + , - , x, /. In spite of the overwhelming advances made in the development of 
programming languages in the last thirty years, the capability of languages in the 
marketplace with respect to mathematical formulas has remained more or 1~ the same. 
(There are of course notable exceptions such as APL and ALGOL-68 and ADA which 
provide facility for use of higher data types and corresponding operators.) 

During the same thirty year period, the theory and practice of computer arithmetic 
has also had a significant development. The development of computer arithmetic as 
desctj.bed in this article is composed of several levels of capability. These are the 
conventional capability, termed elementary computer arithmetic and three new capabil
ity levels termed basic, advanced and higher computer arithmetic. The computer pro
grammer who executes algorithms exploiting the full range of this computer arithmetic 
must be able to conveniently write programs in terms of the operators and data types of 
these three new levels. Thus, we have seen the extension of certain scientifically 
oriented programming source languages, e.g., ALGOL (3), FORTRAN (5), (6), (7), 
PASCAL (8), to accommodate these capabilities. In this section we describe the way in 
which a source language is developed in order to properly interact with the three new 
levels of computer arithmetic, which we have discussed. We begin with the basic 
computer arithmetic framework. 

6. t. Basic computer aridllDetic. For this level of the source language we start with 
the type real (floating-point numbers). We extend the language from its customary 
setting of the four operations m, B, l!J,IZI to the 15 fundamental operations 

1B B l!J IZI EJ 

While the three dot products liJ , 'i', and A operate on vectors, we avoid introducing a 
vector type at this level of the language. Instead, a new type called dot precision along 
with the associated procedure dotadd is introduced in terms of which the dot product 
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operators m , ~ and A may be composed. The following collection of constructs 

dot precision, 
:- (a.wgnment from real to dot precision), 
dotadd, 
a,V,6, 

35 

serve as primitives for developing the operations in the product spaces of the table of 
Fig. 6. 

Apart from the assignment, the procedure dotadd and the roundings a, V, 6, no 
further operations, functions or procedures are required for this (auxiliary) type dot 

·precision.Let R-R(b,l,~1,el) be the floating-point system of the computer in use. A 
variable of the type dot precision is a fixed-point variable with d = t + le 2 + 2/+ 2 !el I 
digits of base b. See Fig. 10. For n ~ b', every sum E7.1a; x b; of floating-point products 
a I x b; can be represented as a variable of type dot precision. Moreover, every such sum 
can be computed in a local store of length d without loss of information (see Fig. 11 ). 

A call for dotadd is given by 

dotadd( A, b, c). 

Tbis makes the assignment2 

A:= A+bxc, 

where A is a variable of type dot precision and where b x c is the double length product 
of the variables b and c of type real. The addition indicated here is to be executed with 
complete accuracy. The exact inner product of two vectors b=(b[i]) and c=(c[i]) is 
now easily implemented with a variable a of the type dot precision and the procedure 
dotadd as follows. 

a:= O; 
for i := 1 ton do dotadd (a,b[i],c[i]); 
x:= a; 

The last statement x := a rounds the value of the variable of type dot precision into the 
variable x of type R by applying the standard rounding D of the computer. x then has 
the value of the inner product b l!J c which is within a single rounding error of the 
exact inner product b·c. By changing the last statement (x := a) in this program to 

x :c: realdown (a), 

resp. x :- realup (a), 

the scalar products b'if/c resp. b&c of the vectors b= (b[i]) and c= (c[i]) are produced. 
For example, the method of defect correction requires highly accurate computation 

of expressions of the form 

with vectors a,b,c,d. Employing a variable x of type dot precision, this expression can 

2 In the remainder of this chapter we shall use a PASCAL-like representation of arithmetic operations. In 
particular, multiplication will be denoted by •. Exponentiation is denoted by the FORTRAN symbol••. 
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now be programmed as follows. 

.x :=- O; 
for i :- 1 ton do dotadd (x,a[i),b[i]); 
for;:- 1 ton do dotadd {.x,c[i),d[i]); 
y :::a:: .x; 

This calculation is an example of our guiding principle. A result involving 2n multi
plications and 2n -1 additions is produced with but a single rounding operation. 

6.2. Advanced eomputer arithmetic. Here the source language provides constructs 
to utilize the advanc;ed computer arithmetic. We make use of a type concept and an 
operator concept as well as the overloading of (certain) function names. The type 
concept makes for easy use of the data types, VR, MR, JR, IVR, IMR, C, VC, MC, 
IC, IVC and IMC shown in Fig. 6. These many data types are implemented in terms 
of the four basic types: real, complex; (real) interval and complex interval and the two 
structurings: vector and matrix. 

The operator concept makes for easy use of the many optimally accurate arith
metic operations associated with all these types. The operator concept required for 
these arithmetic purposes is limited, in principle, to an overloading feature. Types and 
operators for the sets mentioned above should be made available by the language in 
pre-defmed and pre-compiled form. Thus 

(a•x+b)•x+c 

may be an expression for real or for complex matrices if the data and variables are 
correspondingly defined. Its value may be assigned to another variable of the resulting 
type by a single assignment: 

y := ( a • x + b) • .x + c. 

A side effect of such a short notation is that it obviously reveals its parallelism. 
Computation and assignment for all components of such a statement may be executed 
in parallel. 

Traditional programming languages include standard functions such as sqrt, In, sin 
and exp for the basic data type real Such standard functions are now provided for each 
of the basic types real, complex, (real) interval and complex interval. As with all 
operations, this standard function capability is provided with mnima] accuracy. One 
name is used for each standard function regardless of its argument type, that is, 
standard function names are overloaded. 

6.3. Higber eomputer arithmetic. This level of source language deals with the 
capability of developing optimally accurate results for a class of numerical algorithms 
as described in §S. Computational techniques such as mnirnaJly accurate scalar prod
ucts and defect correction methods were .-cl to furnish this capability. Referring to 
that section, we select as an atom for this level of the source language, the capability to 
evaluate to maximum accuracy expressions composed of the data types and operations 
comprising the previous levels. In programming languages such expressions are often 
developed as program parts. Then this level of the source language extension is con
cemed with the specification that a program part shall be executed, equivalently, the 
corresponding expression be evaluated, with niuirnaJ accuracy. 

We give a few examples of how such expression evaluations are encoded: 
1. 1bis example employs a new programming construct. Namely, a prefix eualt is 
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affixed to an expression. Thus, if a, c, e and / are vectors and B and D matrices, then 
the statement 

/:- eval(a+B • c+D • e) 

delivers the value of a+ B • c + D • e to full accuracy. The assignment delivers the 
rounded value of the type of/. Possible assignments are as follows. 

Z :-= rounds to an interval if Z is of type interval. 
z :- rounds to the nearest if z is of type R. 
z :- < resp. z :a: > rounds monotone downwardly resp. upwardly if z is of type R. 

2. Another example is the computation of sums like 

where the A;, B;, i= l(l)n, are vectors or matrices. The corresponding source language 
encoding is 

Z := eval ( sum( A [ i J • B [;), i = 1 .. n)) 

which delivers the value of Z, with the type of Z. 
3. The new source language capability is substantive. Indeed the following exam

ples demonstrate the encoding of expression evaluations which could not have been 
performed simply by applying optimal scalar products. 

a :==>eval(.x+4•(3.0e7• y/z)), 
b :-<eval((( 4• .x-5) • .x+ 3) • .x+ 25e3), 

c == eval(sum(a[i) • .x • • i,i= 1 .. n )). 

The last computes the value of the polynomial 

with high accuracy. 
In many cases it is more user-friendly to express the computation of expressions by 

means of a conventional program part. For example, suppose the expressions are 
already so encoded. The user desiring to upgrade results from such a piece of code so 
that they are highly accurate is not obliged to re-program. He may just upgrade his 
program. 

For example, let PROO stand for the statement sequence of such a program part. 
Let .x,y,z be names of those variables whose values are computed within PROO which 
are to be upgraded to outputs with high accuracy. This is accomplished in the following 
way 

accurate X < ,y > , Z do ...... 
PROO 

end 
This modified program computes x,y,z with high accuracy and rounds .x downwardly, 
y upwardly, z to the nearest. 
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Needless to say, accurate evaluation of expressions or program parts is slower than 
execution with simple floating-point. However, accurate evaluation obviates the need 
for an error analysis. It also may be critical in unstable cases. 

7. Final remarks. Here we comment on certain misconceptions about automatic 
computation and about certain deficiencies in practice which arc not addressed by our 
approach. Then the current state of existing implementation of our approach is surveyed. 

In colloquial use the terms precision and accuracy arc synonymous. With respect 
to computers, precision and accuracy represent quite different concepts. It is surprising 
how much confusion this causes even among people who should know better. Precision 
refers to the quality of the tool whereas accuracy refers to the results produced by that 
tool. A computer may. use great precision, i.e., its Ooating-point mantissa length / and 
its exponent range e2-lell may both be quite large, but the same computer may be 
condemned to produce results of mediocre accuracy. The confusion between these two 
terms is very clearly revealed by computer manufacturers and those computer users 
who believe that more precision is an automatic ticket to higher accuracy in the result. 
Such a manufacturer offers a basic precision, a higher precision and perhaps even an 
extended precision. Such a user dissatisfied with the accuracy of the results obtained in 
single precision simply recomputes in a higher precision. We have already demon
strated by means of simple examples that this does not necessarily produce higher 
accuracy in the resulL A mediocre crew of carpenters supplied with electron micro
scopes to mark their cuts will still produce a rickety house. We stress that the distinc
tion between the concepts of precision and accuracy has always been maintained in this 
article. • 

When people talk numbers they talk decimal, even when conversing with their 
computer. Most computers then slyly talk another language to themselves (binary, 
octal, hexadecimal or whatever). This interface process is not an exact process. It is 
subject to rounding errors with an associated loss of information. This places a burden 
on the user which is frequently not just a minor annoyance. Certainly financial calcula
tions, among others, are affected by this interface problem. 

The use of nondecimal number systems in the computer is a historical develop
ment stemming from ·considerations ultimately based on cost and performance. Mod
em technology eliminates this need to deal with nondecimal number systems. The user 
should not be burdened by the interface conversion problem. If computers also talk 
decimal to themselves, they will be more user-friendly. 

Most computer users have experienced changing computers. With varying degrees 
of trauma, they have learned to deal with the idiosynchrocies of the new system. 
Standardization of computer systems is certainly an ideal which is a long way off. 
However, standardization of the computer arithmetic is at hand. The theory and 
practice of computer arithmetic as discussed in this article provide an excellent vehicle 
for this standardization. The methodology is well founded in fundamental mathemati
cal principles, and the implementation techniques are efficient and practical as well. 
The results are of maxirnaJ accuracy, and the procedures are user-friendly. 

It is of interest to survey the implementations of the methodology discussed in this 
article which arc already in existence: Basic arithmetic is available in a software 
implementation in all mM System 370 computers. Based on this, many parts of 
advanced and of higher order computer arithmetic routines arc available in the form of 
subroutines and program packages. A commercially available such package is called 
ACRITH (13), (14). One particular IBM mainframe, the 4361, offers all basic arithmetic 
capabilities in hardware supported microcode. 
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Basic, advanced and higher order arithmetic routines, embedded in a PASCAL-SC 
environment, are available in two micros, the ZILOG Z-80 and the MOTOROLA-68000. 

A hardware unit which performs all basic arithmetic routines has been built in bit 
slice technology. It may be used as an arithmetic unit in connection with micros or 
mainframes. 

Basic and advanced computer arithmetic bas been embedded into FORTRAN (SJ 
and FORTRAN BX (6), (7). The program.ming language Matrix-PASCAL (8) supports 
basic, advanced and higher arithmetic. 

Recall that basic arithmetic comprises the 15 operations enumerated in §4. The 
arithmetic of the so-called IEEE standard provides for 12 of these 15 operations. These 
12 operations are available on the INTEL 8087 chip, among others (10), [15]. We 
recommend that future versions of such chips implement the optimal scalar product so 
that all 15 of the operations of basic arithmetic are available. At the very least the full 
double length product should be available for all precisions; this capability providing a 
basis for efficient simulation of optimal scalar products. 
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